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PREFACE 

The subject of Resistance of Materials as developed in this 

book is divided in two parts. Part I, called Mechanics of Mate¬ 

rials, treats chiefly of the application of the principles of Analytical 

Mechanics and of the experimental laws of structural materials 

to the analysis of the action in the members used in structures and 

machines. Part II treats chiefly of the structural (force-resisting) 

properties of engineering materials. 

The main object of Part I is to develop rational methods for 

the design of the common types of force-resisting members used in 

engineering structures. The main objects of Part II are (a) to 

investigate the properties of materials from which may be deter¬ 

mined the suitability of material for various structural uses, and 

(b) to consider tests by means of which these properties may be 

measured. But, attention should be called to the fact that much 

of the value of the study of Resistance of Materials lies in gaining 

correct ideas or concepts of the ways various structural and 

machine members act in resisting loads, and of the adjustments 

that occur in a member as loads are applied to it; this general 

knowledge of the actions in materials and members has many 

opportunities to function in engineering practice where definite 

calculations are not required and when it is impossible to obtain 

quantitative results. 

Although Part I is self-contained, reference to Part II (as 

indicated throughout Part I) should prove of value to the student. 

Further, Part II should be of great help to the student in con¬ 

nection with laboratory work in materials testing. 

Throughout the book consideration is given to the effects, on 

the analysis, of deviations in the conditions that may obtain with 

actual members from those that are assumed in the analysis. 

Further, the limitations of the methods of analysis and of the 

formulas developed are pointed out. 



VI PREFACE 

Great care has been exercised in selecting problems that are of 

practical value and yet are easily comprehended and are free from 

unimportant details so that the principles used in their solution 

will stand out clearly. Illustrative problems are given at the 

end of the more important articles and many problems are offered 

for solution; the answers to about one-half of the problems are 

given. 

The moment-area principle for expressing the relations between 

the elastic properties of a beam and the external forces acting on 

the beam is treated in Chapters VIII and IX. Two methods of ap¬ 

plying or interpreting the moment-area principle are used; namely, 

the slope-deviation method and the conjugate-beam method. 

These methods are considered mainly to be supplementary to 

the double-integration method treated in Chapters VI and VII. 

Chapters VIII and IX may be omitted without destroying the 

continuity of the book, and either one of the two methods of 

interpretation may be studied without studying the other. 

Among the special features of the book may be mentioned the 

treatment of repeated stress and fatigue of metals (Chapter XIV); 

the emphasis on the principle of work and energy in determining 

the effect of impact loading (Chapter XIII); the use of the con¬ 

jugate-beam method, in addition to the slope-deviation method, 

in applying the moment-area principle to beams; and the dis¬ 

cussion, in Part II, of the significance of the structural properties 

of materials. 

During the preparation of the manuscript the author was 

greatly aided by valuable suggestions and contributions from many 

of his colleagues. The author is especially indebted to Professor 

A. N. Talbot for helpful suggestions in connection with the gen¬ 

eral point of view toward the subject, and also with the content 

of the book and the method of treatment of various topics; to 

Professor H. F. Moore for valuable contributions to the content 

of the Chapters on repeated stress and properties of materials; 

to Professor N. E. Ensign for reading the manuscript and for 

SDlving most of the problems; and to Professors H. M. Westergaard 

and F. E. Richart for contributions to the methods of applying the 

moment-area principle to beams. The help thus received has 

contributed much to the value of the book. 

August, 1924. 
F. B. S. 
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RESISTANCE OF MATERIALS 

PART I. MECHANICS OF MATERIALS 

CHAPTER I 

STRESS AND STRAIN 

1. Introduction.—Resistance of Materials is that branch of 

Mechanics which treats of the internal forces in a physical body 

and of the changes of shape and size of the body, particularly in 

their relation to the external forces that act on the body, and to 

the physical properties of the material of the body. The external 

forces that act on the body are called loads; the internal forces, 

which resist the external forces, are called stresses, and the changes 

in the dimensions of the body are called deformations or strains. ' 

The total stress 1 on a section through a body is the total internal 

force acting on the section; the component of the internal force 

acting normal to the area is called normal stress; and the com¬ 

ponent acting tangent to (or in) the area is called shearing stress. 

Further, a normal stress may be a tensile stress or a compressive 

stress according as the body is stretched or is shortened. Intensity 

of stress or unit-stress1 is defined to be stress per unit of area. In 

general the intensity of stress varies from point to point over a 

section, its value at any point being considered to be the stress on 

an elementary or differential part of the area, including the point, 

divided by the elementary area; but when the stress is distributed 

uniformly on an area the intensity of stress at all points in the sec¬ 

tion is equal to the total stress on the area divided by the whole 

IIn technical literature the term “stress” is sometimes used to denote 

what is here defined as intensity of stress or unit-stress, and the term 

“internal force” is used to denote what is here called total stress. 
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area. A unit-stress may be expressed in various units; such as 

pounds per square inch (lb. per sq. in.), kilograms per square cen¬ 

timeter (kg. per sq. cm.), tons per square inch (ton per sq. in.), 

etc. 

Similarly, the total deformation or total strain in any direction 

is the total change in the dimension of the body in that direction, 

and the unit-deformation or unit-strain in any direction is the defor¬ 

mation or strain per unit of length in that direction. 

The Problem Defined.—A body when subjected to loads is 

stressed and deformed, and the values of the stresses and the 

deformations in the body are of great importance in many engi¬ 

neering problems. These stresses are found by use of the general 

principles of mechanics (mainly of statics) and of the experimental 

laws that have been found to govern the action of the material. 

The main objects, then, in the study of Resistance of Materials 

are 

(1) To determine the relation between the external 

forces (loads) acting on a body and the resulting internal 

forces (stresses) in the material so that stresses may be 

determined from known loads, or so that the loads that 

produce give stresses may be found, and 

(2) To determine the relation between loads acting 

on a body and the resulting strains produced in the body 

so that strains may be determined from known loads, or 

vice versa, and 

(3) To obtain a knowledge of the physical properties, 

such as, stiffness, strength, ductility, toughness, resilience, 

etc., of the various structural materials, since physical 

properties of the materials are involved in the relations 

under (1) and (2) and are of special importance in determin¬ 

ing the suitability of a material for resisting loads under 

varying conditions of loading. 

f That part of Resistance of Materials which considers chiefly 

the application of the principles of mechanics to materials for the 

purposes stated under .(1) and (2) above is frequently called 

“ Mechanics of Materials ” and is discussed mainly in Part I of 

this book, whereas Part II is devoted to a brief discussion of the 

properties of structural materials. 
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As suggested by the statements under (1) and (2) above, in 

some problems of design, the stress produced in the body by the 

load is the governing factor in the design, whereas in other prob¬ 

lems the strain produced is the more important factor. For exam¬ 

ple, the chain of a hoist fulfills its function of lifting loads regard¬ 

less of the amount of stretch of the chain that occurs, provided 

that the load does not produce too large a stress in the chain. 

That is, the stress developed in the chain by the maximum load 

to be applied is the governing factor in the design of the chain. 

Likewise, stress is generally the governing factor in the design of 

many of the parts of bridges, buildings, cranes, ships, etc. In 

the design of machine tools, however, such as planers, lathes, drill 

presses, grinding machines, etc., the deformations of the parts 

are frequently of prime importance since such machines will not 

produce work of sufficient accuracy if the deformation of the parts 

is too large. 

In obtaining the relations under (1) and (2) above, it will be 

found that the stresses and strains produced in a body by the 

loads depend on (a) the type of loading (whether static loads, 

impact loads, or repeated loads), (b) the dimensions of the body or 

the shape of area on which the stress occurs, and (c) the properties 

of the material of the body. An example of the influence of each 

of the above factors may be given as follows: (a) a load applied 

suddenly to a body produces more stress and deformation in the 

body than does the same load when applied slowly; (b) a rolled 

I-section or channel-section has its area distributed better for 

resisting bending than does a bar of equal area having a rectan¬ 

gular or circular cross-section; (c) the elongation of an oak stick 

caused by a given load is greater than that of a bar of steel of the 

same dimensions when subjected to the same pull, etc., etc. 

2. Types of Loading.—With reference to the manner in which 

loads are applied or transmitted to a structure or machine, the 

loads will be considered under three distinct headings; namely, 

static loads, impact and energy loads, and repeated loads. 

1. Static, steady or dead loads are forces that are applied slowly 

and not repeated, and remain nearly constant after being applied 

to the body, or are repeated relatively few times; such as the 

loads on most buildings (a part of the load being the weights of the 

members of the structure), the load applied to a bar in a testing 

machine, etc. 
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2. Impact loads are forces that are applied to the resisting body 

in a relatively short period of time; the shorter the time the 

greater the effect of the impact. An impact load, in general, is 

applied by a body that is in motion when it comes in contact with 

the resisting body, and the force exerted by the moving body and 

the period during which it acts can not in general be determined. 

For this reason in many problems it is more satisfactory to calcu¬ 

late the stress and strain produced by an impact load from the 

energy delivered to the resisting body by the moving body. When 

this is done the energy delivered to the resisting body is called an 

energy load and is expressed in foot-pounds (not in pounds). 

Impact and energy loads are considered in Chapter XIII. 

3. Repeated loads are forces that are applied a very large num¬ 

ber of times causing a stress (or stresses) in the material that is 

continually changing, usually through some definite range. 

For example, the loads applied to the connecting rod of an engine 

when the engine is running, the wheel loads on a railroad rail as a 

train passes over the rail, etc., are repeated loads. Repeated loads 

are discussed in Chapter XIV. 

Other Classifications of Loads.—Loads may be classified as dis¬ 

tributed loads and concentrated loads. A distributed load may be 

uniformly distributed or non-uniformly distributed. Thus, if 

sand be spread on a floor so that its depth is constant, the 

floor will be subjected to a uniformly distributed load, whereas, 

if the sand be distributed so that its depth is not constant the 

floor is said to carry a non-uniformly distributed load. A con¬ 

centrated load is one whose area of contact with the resisting body 

is negligible in comparison with the area of the resisting body. 

With reference to the manner in which the stresses in a body 

will vary from point to point and also to the general kind or type 

of stress and deformation that will be developed, the loads will, 

for convenience, be considered under three headings; namely, 

central loads, torsional loads, and bending loads. A body, how¬ 

ever, may be subjected simultaneously to loads of any two or to 

all three of these types. 

The stresses and strains caused by static central loads are dis¬ 

cussed in this chapter. The stresses and strains caused by static 

torsional loads are considered in Chapter IV, and those produced 

by static bending loads in Chapter V. 
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Static Central Loads 

3. Stresses Due to Central Loads.—A central load is a con¬ 

centrated load whose action line passes through the centroid of 

the area on which the stresses are to be considered, or a distrib¬ 

uted load whose resultant passes through the centroid of the area. 

The stress produced by a central load may be any one of the 

three types, tensile stress, compressive stress, or shearing stress, 

but the distinguishing feature of a central load as compared with 

torsional and bending loads is that the stress may be assumed to be 

uniformly distributed over the area, that is, the intensity of stress 

(unit-stress) may be assumed to be constant. If a central load 

acts normal to the area it is called an axial load and it may be a 

Tensile stres? Compressive stress Shearing' stress 

Fig. 1.—Tensile, compressive and shearing stresses. 

tensile or a compressive axial load according as it produces tensile 

or compressive stress; if the central load lies in the plane of the 

area it is called a shearing central load. 

Stresses due to central loads may be found as follows: Fig. 

1(a) represents a straight bar AB subjected to an axial tensile 

load P causing tensile stress on any cross-section of the bar; 

Fig. 1(c) represented a bar in compression under the action of an 

axial load P causing compressive stress in the bar; and Fig. 1(e) 

represents a body under the action of a central shearing load P 

causing shearing stress on the area A BCD. The problem is to 

find the relation between the load and the unit-stress developed 

for each of these three types of central loads. Let a section be 

passed through the body in each case and a free-body diagram for 

either part of the body be drawn, as shown in Figs. 1(6), 1(d), 

and 1(f). Since the load in each case passes through the centroid 
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of the area, the intensity of stress may be assumed to be constant; 

that is, the stress may be assumed to be uniformly2 distributed 

over the area, and hence the total stress (called the resisting stress) 

is equal to the product of the area, a, and the unit-stress, s. There¬ 

fore, since each part of the body, in each case, is in equilibrium 

under the action of two collinear forces we may write 

Hence, 

load = resisting stress. 

P = atSt\ P = acsc; and P = asss, . . . . (1) 

in which the subscript denotes the kind of stress (tensile, com¬ 

pressive and shearing). Thus, in general, a 

central load, for any section of a body, is equal 

to the product of the area of that section and the 

unit-stress on the area. 

It should be noted that the load P of Fig. 

1(e) is not a central load unless the plate E is 

exceedingly thin, but in engineering computa¬ 

tions shearing loads may frequently be assumed, 

without serious error, to be central loads even 

though they do not comply strictly with the 

above definition of a central load. Further, the 

load with respect loads P of Fig. 2 are axial loads for section ran 

only0116 section but not for any other section, and if the loads 
were applied at points Oi they would not be 

axial loads for any section of the body. 

Fig 

ILLUSTRATIVE PROBLEM 

Problem 1. In determining the strength’ of concrete, a test cylinder 

8 in. in diameter and 16 in. high is loaded in a testing-machine as shown 

in Fig. 3(a). (a) If the maximum axial load Q that the concrete specimen can 

resist is 100,000 lb., determine the maximum unit-stress developed in the 
concrete. The dimensions shown in Fig. 3(6) and 3(c) were obtained from 
a testing-machine having a capacity of 100,000 lb.; when the concrete specimen 

is resisting its maximum load find (6) the maximum tensile unit-stress in 

each of the two screws of the testing-machine, (c) the shearing unit-stress in 

2 For a discussion of the influence of the relative dimensions of the body 

and of other conditions on the distribution of the stress over the cross- 
section, see Art. 136 to 139. 
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the threads of the screws, (d) the shearing unit-stress on the cylindrical 
area AB of the bronze bushing, and (e) the bearing unit-stress of the threads 
on the bushing. 

Solution.—(a) Since the load Q on the concrete specimen is an axial 
load the unit-stress on any section mn is uniformly distributed, and hence 
the total resisting stress is equal to acsc (see Fig. Id). Hence, 

Q = ucsc, 
7T (8)2 

100,000 = -y-.«c, 

sc = 1990 lb. per sq. in. 

Thus, the compressive stress in the concrete is 1990 lb. per sq. in. 

(6) A tensile load P of 50,000 lb. is resisted by each screw. Hence, 

P=atst, 
tt(2.35)2 

50,000 = - 4 -st, 

st = 11,500 lb. per sq. in. 

The maximum tensile stress, then, that will be developed in the screws of 
this machine is 11,500 lb. per sq. in. 

(c) The area of the thread on which the shearing stress is developed as 
the thread resists being stripped from the screw is, 
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Shearing area = as = thickness of thread X circumference at root of 

thread X number of threads, n, in the depth, h, 
l h 

of the bushing in which the screw turns ( n — — f 

where p is the pitch) ' ^ 

1 6 
= -X7rX2.35X —= 22.15 sq. in. 

4 0.5 

Now since the load of 50,000 lb. on each screw is resisted by the shearing 

stress on this 22.15 sq. in. of shearing area, we have, 

P = asss, 

50,000 

22.15 
= 2260 lb. per sq. in. 

(d) The shearing area in the head of the bushing is 

as = circumference X depth 

=7r 3.75 X2 = 23.55 sq. in. 

The shearing unit-stress on this area due to the 50,000-lb. load is 

P 50,000 ^ „ 
s5 = - = 7^rr = 212° lb- Per S(h in* d§ 23.55 

(e) The bearing area, a*>, of the threads on the bushing is 

ab = -^6 Xir 2.35 X12 = 16.6 sq. in. 

The bearing unit-stress, then, is 

P 50,000 
Sb = — =-= 3010 lb. per sq. in. 

db 16.6 

PROBLEMS 

2. If a specimen of wood is tested as shown in Fig. 4, and the maximum 

tensile unit-stress that the specimen can resist is 8000 lb. per sq. in., (a) 

what is the maximum axial load P that can be applied to the specimen? 

(b) What is the shearing unit-stress in the heads of specimen when the 

load P is applied? 

Wall 

Fig. 4.—Tension and shear in wood specimen. Fig. 5.—Bearing pressure 
of washer on wall. 

3. A tie-rod 2 in. in diameter (Fig. 5) is used to help resist the lateral 

pressure against the walls of a bin. If the tensile unit-stress in the tie-rod 
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is 15,000 lb. per sq. in., what diameter, d, should the washer have in order 

to keep the bearing unit-stress of the washer on the wall from exceeding 

200 lb. per sq. in.? Ans. 17.5 in. 

4. A timber frame shown in Fig. 6 carries a load, Q, of 12,000 lb. Find 

(a) the compressive unit-stress in the members A and B; (b) the shearing 

unit-stress in the timber C; and (c) the compressive (or bearing) unit-stress 

of C on the blocks D, which are 4-in. cubes. 

Fig. 7.—Pin-connected wall bracket. 

5. The wall bracket shown in Fig. 7 carries a load, Q, of 10 tons. Find 

the tensile unit-stress in each of the two eye-bars, and the shearing unit- 

stress in the pins A and B if the diameter of each pin is 1 \ in. 

Ans. s* = 12,900 lb. per sq. in. ss = 7310 lb. per sq. in. 

6. The bearing unit-stress for the collar bearing shown in Fig. 8 is 

90 lb. per sq. in., and the compressive unit-stress in the shaft is 6000 lb. 

per sq. in. If the diameter, di, of the shaft is 6 in., what is the load, P, on 

the shaft and the diameter, dz, of the collar? If the thickness, i, of the 

collar is 1 \ in., what is the shearing unit-stress on the area of contact between 

the collar and shaft? 

JLl 
ff 

Tv i 
Collar 

Fig. 8.—Collar 
bearing. 

Fig. 9.—Shear in key connect¬ 
ing pulley and shaft. 

7. A pulley (Fig. 9) transmits a turning moment, PXd, of 12,000 lb.-ft. 

to a 4-in. shaft, relative motion between the pulley and the shaft being 

prevented by a Hat key 1 in. wide, f in. deep, and 6 in. long. Compute 

the shearing unit-stress in the key. Ans. ss = 12,000 lb. per sq. in. 
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4. Strains Due to Central Loads.—Tensile Strain.—If an axial 

tensile load is applied to a straight bar of constant cross-section 

and of homogeneous material the bar is elongated or stretched 

and the strain per unit of length, that is, the unit-strain (unit 

elongation) et is given by the expression 

in which et is the total tensile deformation and l is the original 

length of the bar. If the cross-section of the bar is not constant 

or if the material is not homogeneous, all unit lengths of the bar 

will not elongate the same amount, and the above expression then 

represents only the average unit-strain; thus, since the unit-strain 

varies from section to section along the bar, the unit-strain at any 

section of the bar is the ratio of the elongation det, of an elemental 

length dl, including the section, to the length dl. That is, the 

unit-strain at any section of the bar is 

(3) 

In order to determine et from the above expression et of course, 

must be expressed in terms of l (see the solution of Problem 12 

where this is done). 

Compressive Strain.—Similarly, if an axial compressive load is 

applied to a straight bar of constant cross-section and of uniform 

material (see Fig. lc) the bar is deformed (shortened) an amount 

ec and the unit-strain (unit-shortening) ec is 

(4) 

In loading a physical bar, it is practically impossible to obtain 

an axial compressive load; further, physical bodies are never 

homogeneous nor straight. Therefore, a compression member if 

relatively slender will bend when subjected to a load that is 

assumed to be axial. Bending action in compression members is 

discussed in Chapter XI. 

Shearing Strain.—Shearing strain (sometimes called detrusion) 

usually occurs in combination with tensile and compressive strain 

in connection with twisting and bending action, and it usually 

varies from point to point in the body. Although shearing strain 
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due to a central shearing load cannot be found experimentally as 

can tensile and compressive deformations, the meaning of shearing 

strain and the quantitative measure of shearing unit-strain 

will be discussed at this point. Thus, let Fig. 10(a) represent 

a bolt subjected to the shearing load P which tends to shear 

off the head of the bolt. The rectangle A BCD of Fig. 10(6) repre¬ 

sents a vertical section (enlarged) of that portion, A BCD, of the 

bolt that is subjected to shear. The head of the bolt exerts shear¬ 

ing stresses on the face BC and the lower part of the bolt exerts 

opposite shearing stresses on the face AD. Other forces would 

have to act on A BCD to hold it in equilibrium (that is P is not, 

strictly speaking, a central shearing load for section AD), but only 

the shearing forces will here be considered. The shearing forces 

shown in Fig. 10(6) cause the 

rectangle A BCD to assume the 

from of a rhombus AB\C\D. The 

part ABCD of the bolt sub¬ 

jected to shear may be considered 

to be made up of thin layers of 

materials each layer sliding a 

small amount relative to the layer 

beneath it. The total sliding, that 

is, the total shearing strain in 

the length A B or l is es, and the shearing deformation per unit, 

length, that is, the shearing unit-strain es, is 

/Ci 

Fig. 10.—Shearing strain. 

but 

tan 

where 0 is the change in the inclination of a line in the body that 

was originally perpendicular to the direction of the shearing 

deformation. Further, for a ,small angle, the tangent of the 

angle and the angle (expressed in radians) may be assumed to be 

equal without introducing serious errors. Therefore, 

The shearing unit-strain at any point in a body is measured 
by the change in inclination (expressed in radians) of two lines 
that pass through the point and that were originally at right angles 



12 STRESS AND STRAIN 

Hence 

es = y = tan 0=0.. (5) 

It will be shown later that a shearing stress (and also strain) on a 

given plane at a point in a body requires that there be a shearing 

stress (and strain) of equal intensity at the same point on a plane 

at right angles to the first plane, as is suggested by the distortion 

of the small cube within the body ABCD as shown in Fig. 10(6). 

It will be noted that a unit-strain (whether tensile, compressive, 

or shearing) is a length divided by a length and hence is an abstract 

number when each length is expressed in the same units; that is, 

its value is the same whether expressed as inches per inch or as 

feet per foot, etc. 

PROBLEMS 

8. A straight bar 6 ft. long and § in. in diameter is turned down to a 
diameter of \ in. for a distance of 2 ft. in its central portion. An axial 
load P causes a unit-deformation of 0.001 in the central 2 ft. and a total 
stretch of 0.04 in. in the whole bar. What is the unit-deformation of each 
of the end portions? 

9. From compressive tests of concrete cylinders it has been found that 
the concrete fails when the unit-deformation is about 0.0012. How much 
does a specimen 8 in. in diameter by 16 in. high shorten before failure occurs? 

5. Stress-strain Curve. Proportional Limit. Yield-Point. 
Ultimate Strength. Elastic Limit. Modulus of Elasticity.— 
Experiments have shown that for nearly all structural materials 

the unit-stress in a material is approximately proportional to the 

accompanying unit-strain of the material provided that the unit- 

stress does not exceed a certain value. For example, let a steel 
bar (Fig. 11) of length l and of constant cross-section, a, be sub¬ 

jected to an axial tensile load that gradually increases from zero 

value until the bar breaks. If P denotes any value of the load, 
P 

then the unit-stress, st, corresponding to that load will be —. 

Further, let measurements of the stretch, e, of the bar be taken 

(by means of an extensometer) for various values of st; the unit- 

strain e, then, may be found from the expression € = y The rela¬ 

tion between the unit-stress, st, and the unit-strain e, found experi¬ 

mentally as indicated above, is represented, within quite approx- 



STRESS-STRAIN CURVE 13 

imate limits, by the stress-strain graph in Fig. 12(a), if the material 
is ductile such as low-carbon steel and other ductile metals, and 
by the stress-strain graph in Fig. 13 if the material is brittle,3 such 
as high-carbon steel, etc. 

m 

Fig. 11.—Tensile 
test specimen. 

Proportional Limit.—As indicated in Figs. 12 and 13, it is 
found that for most structural materials, as the unit-stress is 
increased the unit-strain is increased in practically the same ratio; 

if the unit-stress is doubled the unit-strain is likewise doubled, 
etc.; that is, the stress-strain curve is a 
close approximation to a straight line 3 until 

the unit-stress reaches a value called the 
proportional limit (or limit of proportion¬ 

ality). This unit-stress is represented on 
the stress-strain curve by the ordinate to 

the point P-L in Figs. 12 and 13. There¬ 

fore, the proportional limit of a material is 

defined to be the maximum unit-stress that 
can be developed in the material without 

causing the unit-strain to increase at a 

greater rate than the unit-stress increases, 

as load is applied to the body. 

Yield Point.—As the load on the bar is increased further, 

causing a stress greater than the proportional limit, a unit-stress 

Fig. 13.— Stress-strain 
diagram for brittle 
material. 

3 The stress-strain curves for concrete and cast iron are curved practically 
all the way, but the first part of the curves, corresponding to relatively 
small stresses, may be assumed without serious error to be straight lines. 
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is reached at which the material continues to deform without an 
increase in load, provided that the material is ductile. The unit- 
stress at which this action occurs is called the yield-point, and is 
represented on the stress-strain curve by the ordinate to the part 
CD of the graph in Fig. 12 (only ductile metals have yield-points). 
Thus the yield-point of a material is defined to be the unit-stress 
in the material at which the material deforms appreciably without 
an increase of load. 

The value of the unit-deformation for a bar when stressed to its 
proportional limit depends on the kind of material; the value for 
structural steel is about 0.0012, and for timber about 0.0020. 
Thus, if the bar in Fig. 11 were structural steel and its length, l, 
were 10 in., the total stretch e when the bar is stressed to its pro¬ 
portional limit would be e= el = 0.0012 X 10 = 0.012 in. Thus, 
in order to detect and measure the small strains that accompany 
stresses less than the proportional limit a strain-measuring appa¬ 
ratus (extensometer) is attached to the specimen. Further, the 
load is applied and measured by means of a testing machine 
similar to that shown in Fig. 3. The stretch that occurs while the 
bar is stressed at its yield-point, however, is relatively large, being, 
in the case of structural steel, as much as 0.025 in. per inch of 
length; a bar 10 in. long, then, would stretch one-fourth of an 
inch without an increase in load; this stretch is represented by the 
portion CD of the curve in Fig. 12. 

Ultimate Strength.—If the load on the bar (Fig. 11) increases 
still further, the unit-stress and unit-deformation increase as indi¬ 
cated by the portion of the curve DEF (Fig. 12a) if the material 
is ductile, until the maximum unit-stress is reached, which is repre¬ 
sented by the ordinate to the curve at F and is called the ultimate 
strength. The ultimate strength for a brittle material is repre¬ 
sented by the ordinate to F in Fig. 13; -a brittle material breaks 
when stressed to the ultimate strength whereas a ductile material 
continues to stretch. Hence, the ultimate strength of a material is 
defined to be the maximum unit-stress that can be developed in 
the material, as determined from the original cross-section of the 
bar or specimen; the cross-section of the bar decreases somewhat 
as the bar is stressed above the yield-point. 

After the ultimate strength of a ductile material is developed, 
the bar begins to “ neck down,” thereby rapidly reducing the area 
of cross-section at the neck-down section (Fig. 14), and the load 
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required to cause the bar to continue to stretch decreases, as indi¬ 
cated by the curve FG (Fig. 12a). The load on the bar at the 
instant of rupture is called the breaking load. The breaking load 
divided by the area of the neck-down section is the value of the 
unit-stress in the bar when rupture occurs and this value is con¬ 
siderably greater than the ultimate strength. The ultimate 
strength, however, is of more importance than any stress in the 
bar after necking down has started, since the bar is in the process 
of failing after necking down starts. 

Elastic Limit.—If the load on the bar is released after the 
bar has been stressed beyond the yield-point, the bar will not 

Neck-down 
Section 

Eig. 14. — Form of 
ruptured specimen 
of ductile steel. 

return to its original length, but will retain a part of its deforma¬ 
tion. The deformation per unit of length retained by the bar 
after the load (and stress) has been reduced to zero is called the 
'permanent set or merely set. For example, let the bar (Fig. 11) be 
stressed to the unit-stress, s, represented by the ordinate, ME, to 
the point E on the stress-strain curve in Fig. 15, the unit-strain 
corresponding to the unit-stress s being OM. If the load is grad¬ 
ually released the stress-strain curve will be represented by 
the line EN. That is, part of OM, represented by MN, is 
recovered but a part, represented by ON, is retained by the bar. 
ON therefore, represents the set corresponding to the unit-stress s. 

If however, the bar were subjected to a unit-stress equal to 

W 
A 

Fig. 15.—Stress-strain diagram showing perma¬ 
nent set. 
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(or less than) the unit-stress called the elastic limit, the bar will 

return to its original length when the load (and stress) is reduced 

to zero. Hence, the elastic limit of a material is defined to be the 

maximum unit-stress that can be developed in the material without 

causing a permanent set. 

In order to determine experimentally the value of the elastic 

limit for a material, a bar is subjected to a relatively small axial 

load and the load is released; if the extensometer shows that the 

bar has acquired no permanent deformation a larger load is 

applied and then released, etc. Thus, the stress in the bar is 

increased in small increments until a unit-stress is found which, on 

release of the stress, leaves a very small set in the bar, the minimum 

unit-stress at which set first occurs being the elastic limit. The 

results of tests show that for most structural metals the elastic 

limit of the metal has approximately the same numerical value as 

has the proportional limit of the material, and in technical liter¬ 

ature, the proportional limit frequently is called (though incor¬ 

rectly) the elastic limit. Further, the yield-point is sometimes 

called the commercial elastic limit. 

Modulus of Elasticity.—If the bar discussed in the preceding 

article were subjected to a compressive stress, or to a shearing 

stress instead of a tensile stress, the stress-strain curve would be of 

the same form as that shown in Figs. 12 and 13. Hence, it follows 

that when a material is stressed in one direction 07ily, the unit- 

stress at any point in a material is proportional to the unit-strain 

at that point, provided that the unit* stress does not exceed the 

proportional limit of the material. That is, for stresses within the 

proportional limit, all elastic material behaves according to the 

same law; namely, that the ratio of the unit-stress to the unit- 

deformation is a constant, or expressed mathematically, 

s 
- = a constant,.(6) 

regardless of the kind of stress developed (whether tensile, com- 

presive or shearing) and regardless of the way the stress and defor¬ 

mation are produced (whether by axial, bending or torsional loads, 

etc.). This is known as Hooke’s law.4 The numerical value of 

4 As pointed out earlier in this article, this law should be regarded as 

approximate, the error involved being negligible for most computations 

involving static loads and ductile materials but not necessarily negligible 

when repeated loads are involved, as will be discussed in Chapter XIV. 
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this constant ratio, however, is in general different for any one 

material when subjected to the different types of stress, and is also 

different for the different materials subjected to the same types of 

stress. 

The numerical value of the constant ratio of the unit-stress in 

a material to the accompanying unit-strain within the propor¬ 

tional limit is called the modulus of elasticity of the material. The 

symbol E will be used to denote the modulus of elasticity, and sub¬ 

scripts t, c and s will be used to denote tensile, compressive and 

shearing, respectively. Thus, we may write 

E,=~, Ec=~ and Es=-.(7) 
€c es 

and, when the stress and deformation are caused by central loads, the 

above expressions may be written as follows: 

F-a-pi\ F-Pl JtLt-—> - 
a i CL6t aec 

i 

, p a P 
and Es = — = —- 

cs dcf) 

i 

. (8) 

The value of Es is not found experimentally, however, from the 

above expression since the shearing deformation <f> (see Art. 4) 

caused by a central shearing load is very difficult if not impossible 

to measure. The value of Es, however, can easily be found when 

the shearing unit-stress and shearing unit-strain are produced by 

torsional loads as is discussed in Chapter IV. 

It should be noted that the modulus of elasticity is expressed 

in the same units as is unit-stress since e is a ratio of length to 

length and is therefore merely a number. 

As stated above, the values of the moduli of elasticity for 

any one material are, in general, not the same. For steel the ten¬ 

sile and compressive moduli of elasticity, Et and Ec, are approx¬ 

imately 30,000,000 lb. per sq. in., but the shearing modulus, Es, is 

approximately 12,000,000 lb. per sq. in. Similarly, any one of 

the moduli has different values for different materials. Thus, 

average values of the tensile moduli for steel, cast iron and timber 

(pine) are respectively 30,000,000, 15,000,000 and 1,500,000 lb. per 

sq. in. 
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It follows from the definition that the value of the modulus of 

elasticity of a material is represented by the slope of that portion 

of the stress-strain curve below the proportional limit; this portion 

of the curve is usually drawn to a large scale as in Fig. 126 so that 

the value of the slope can be obtained with reasonable accuracy 

(see also Art. 144). Now this slope represents the rate at which 

unit-stress increases with unit-strain and hence the modulus of 

elasticity of a material is a measure of the stiffness of the material. 

That is, if one material has a modulus of elasticity twice as great 

as another material, the resisting stress in the one material, for a 

given strain, is twice as great as that in the other, and hence the 

one material is twice as stiff as the other. 

6. Properties of Structural Materials.—The proportional limit, 

elastic limit, yield-point, ultimate strength, modulus of elasticity, 

etc., of a material are usually called physical (or mechanical) 

properties of the material, the values of which are found from 

experimental results, and the numerical values of the properties 

are frequently called physical constants. Much of the material 

used in structures and machines is bought according to specifica¬ 

tions which give the values of the physical properties that the 

material shall have for various uses. A number of technical 

societies and engineering companies have published specifications 

of structural materials; perhaps the most complete specifications 

are those of the American Society for Testing Materials called 

the “ A.S.T.M. Standards.” 

Average values of various properties for a few of the more 

common engineering materials are given in Table 1. Attention is 

called to the fact that the properties of a commercial material 

necessarily vary somewhat due to the uncontrollable factors in the 

method of manufacture, treatment, etc., and that the specifica¬ 

tions usually make reasonable allowance for this variation by 

specifying a range of values or a minimum value for the properties 

which a material must have. For example, the ultimate strength 

of “Structural Steel for Building” as given in the “A.S.T.M. 

Standards ” is 55,000 to 65,000 lb. per sq. in. and the yield-point 

must be not less than one-half of the ultimate strength. 

The average values in Table 1 are presented with the view 

of helping the student to develop judgment in the use of engi¬ 

neering materials; the values in the table should be used when 

needed in the solution of subsequent problems. A detailed dis- 
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cussion of the significance of the properties of structural mate¬ 

rials is given in Chapter XV, and tables giving values of the prop¬ 

erties of most of the structural materials are given in Chapter XVI. 

In commercial testing of ductile material, such as structural 

steel, the four quantities usually found are the yield-point, the ulti¬ 

mate strength, the elongation in per cent and the reduction of area 

in per cent; the proportional limit, elastic limit and modulus of 

elasticity are seldom found in commercial tests. 

The percentage of elongation is found by dividing the increase 

in length of a bar after rupture has occurred by the original length 

and multiplying by 100; and the percentage of reduction of area 

is found by dividing the difference between the areas of the rup¬ 

tured and original sections by the area of the original section and 

multiplying by 100. The percentage of elongation and of reduc¬ 

tion of area are measures of the ductility of a material (see Art 

141 for further discussion). 

The following facts should be noted from a study of Table 1: 

(а) The shearing proportional limit for steel is about six-tenths 

(0.6) of the tensile proportional limit. 

(б) The ultimate strengths of the more ductile steels are about 

twice as large as the yield-points. 

(c) The tensile moduli of elasticity of all grades of steel are 

equal, the value of the modulus being 30,000,000 lb. per sq. in.; 

thus the stiffness of steel is constant, whereas the strength of steel 

varies greatly with the composition and treatment. 

(d) The shearing moduli of elasticity of all grades of steel are 

equal, the value of the modulus being two-fifths of the tensile 

modulus; Es = % Et = % 30,000,000= 12,000,000 lb. per sq. in. 

(e) The maximum useable compressive strength of ductile 

material is the yield-point of the material. 

(/) The compressive strength of brittle material (cast iron, 

concrete, stone, etc.) is greater than the tensile strength. 

(ig) The strength of timber varies greatly with the direction of 

the grain. 

ILLUSTRATIVE PROBLEMS 

Problem 10. A short concrete compression member is reinforced with 

12 rods of steel % in. in diameter arranged in a circle with a 5-in. radius as 

shown in Fig. 16. A uniform pressure or load is applied to each end surface 

of the member. The concrete outside of the reinforcing rod is used for pro¬ 

tecting the rods in case of fire and is not assumed to resist any of the load. 
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If the load causes a compressive unit-stress of 600 lb. per sq. in. in the 

concrete, what is the unit-stress in the steel rods, and what is the total load 

carried by the member. The compressive moduli 

of elasticity of the concrete and steel are Ei = 2,000,- 

000 lb. per sq. in., and ^2 = 30,000,000 lb. per sq. 

in., respectively. 

Solution.—Let the subscript 1 refer to concrete 

and the subscript 2 refer to the steel. Thus, 

and 

Ei=— or Si=Eiei . (9) 
ei 

E-2 = — or s2=E2e2. . (10) 
€2 

But since the concrete and the steel shorten Fig. 16.—Concrete com- 

the same amount, ei = e*. Hence, dividing (9) by pression member rein- 
, ” forced with steel rods. 

(10), we have 

$2 E« 
- = — = 15, 
si Ei 

or 

s2 = 600X15 = 9000 lb. per sq. in. 

Therefore, the compressive stress in the steel is 9000 lb. per sq. in. Thus, 

the stress in the steel increases with deformation 15 times as fast as does 

the stress in the concrete; that is, steel is much stiffer than is concrete. 

The total load P, then, is 

7r(i)2 tt(10)2 
P = 9000 X12 X —^—|-600X“—— 

/, 

= 68,300 lb. 

Problem 11.—A bar is l in. long, has a constant cross- 

sectional area of a sq. in., and weighs w lb. per ft. of length 

per sq. in. of cross-section. Find the total elongation of 

the bar when it is suspended from one end and is sub¬ 

jected to no downward load except its own weight. If the 

bar is made of steel and is 400 ft. long, calculate the total 

stretch of the bar. (A steel bar having a cross-sectional 

area of 1 sq. in. weighs 3.4 lb. per ft. of length.) 

Solution.—The unit-stress, s*, on a section at any dis¬ 

tance y in. (Fig. 17) from the lower end expressed in lb. per 

sq. in. is 

Fig. 17.—Bar 
stretched by g _awy_wy 

its own weight. 1 12a 12 

and the unit-deformation at this section is 



22 STRESS AND STRAIN 

The elongation of the short length, dy in., of the bar along which the unit- 

elongation may be assumed to be constant is 

det=etdy, 

and the total elongation (in inches) in the length of l in. is 

3.4X(400X12)2 

12X30,000,000X2 

= 0.107 in. = elongation of steel bar 400 ft. long. 

PROBLEMS 

12. It is specified that a steel rod 40 in. long is to be subjected to a 

unit-stress not greater than 10,000 lb. per sq. in. and to be elongated not 

more than 0.01 in. when resisting a tensile axial load of 20,000 lb. Deter¬ 

mine the cross-sectional area required to satisfy each of the specifications 

and state which requirement governs the design. 

13. Load in Reading of Exten- 

Pounds someter in Inches 

500 0.0 

1500 0.0005 

500 0.0 In a tension test of a steel bar 

3000 0.0010 0.499 in. in diameter the elongation 

500 0.0 was measured over a gage length of 

4490 0.0020 2 in. Successive readings of the load 

500 0.0001 and of the extensometer were as given 

5980 0.0025 herewith. Determine the elastic limit, 

500 0.0002 the proportional limit and the yield- 

7510 0.0030 point of the material. 

500 0.0005 

8630 0.0035 

500 0.0010 

9500 0.0010 

500 

9600 0.0130 

14. Two blocks, each 4 in. by 8 in. by 40 in., are bolted together to form 

a compression member as shown in Fig. 18. A pressure is applied to the 

top surface of the member causing both blocks to shorten the same amount. 
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If one of the blocks is made of gray cast iron and the other of oak, find the 

total load P when the unit-stress in the cast iron is 25,000 lb. per sq. in. 

Cover plate 

Oak 
Cast 
Iron 

<—4—> <—4^-> 

i 

Fig. 18.—Two-material 
compression block. 

15. Two wires, one of steel for which Et is found to be 14,500 tons per 

sq. in., and one of copper for which Et is found to be 7500 tons per sq. in., 

have the same length and carry equal axial loads. The copper wire has a 

diameter of 0.03 in. If each wire elongates the same amount, what is the 

diameter of the steel wire? Ans. d = 0.0155 in. 

16. Will a permanent set be caused in a wrought-iron bar f in. in diameter 

and 3 ft. long when subjected to an axial tensile load of 24,000 lb.? 

17. A steel piano wire with a constant cross-section of 0.00038 sq. in. 

has an elastic limit of 100,000 lb. per sq. in. If the wire is used to let down 

a 30-lb. body from the top of a building 500 ft. high, what must be the 

original length of the wire if the body just touches the ground when sus¬ 

pended by the wire? (Steel weighs 0.28 lb. per cu. in.) 

18. The boiler brace shown in Fig. 19 resists the pressure on an area 

of 80 sq. in. of the boiler-head, (a) If the steam pressure in the boiler is 

120 lb. per sq. in., what is the tensile unit-stress in the brace? (6) If the 

brace is made of steel, how much does it elongate; assume that the rod is 

of constant diameter from pin to pin. (c) What is the shearing unit-stress 

in the three rivets at A if the diameter of each rivet is f in.? 

Ans. (a) 16,900 lb. per sq. in., (5) e = 0.0182 in., (c) ss = 6780 lb. per sq. in. 

19. How long must be the bar described in Problem 12 in order to cause 

a stress in the bar equal to the proportional limit of the material? The bar 

is made of structural steel. 

7. Working Stress.—A working stress or an allowable stress for a 
material is the maximum unit-stress that is considered to be safe 
for the material when the material is resisting the loads that are 
assumed to be applied to it in service. The values of allowable 
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stresses that are commonly used for various materials when resist¬ 

ing various types of loading have been determined largely from the 

results of tests of the materials and from the accumulated experi¬ 

ence obtained in the construction and use of structures and 

machines under service conditions; Table 2 gives commonly used 

values of working stresses for several materials when the material 

is subjected to static loads (see Table X of Chapter XVI for a 

more extensive table of values). 

The allowable working stress in a member is always consider¬ 

ably less than the ultimate strength of the material of the member. 

For brittle materials (materials that do not have yield-points), 

such as concrete, cast iron, high carbon steel, etc., the working 

stress is frequently taken as a certain proportion 5 of the ultimate 

strength of the material. For ductile materials, such as structural 

steel, wrought iron, etc., the working stress may be taken to be 

either a certain proportion 5 of the ultimate strength or a certain 

(but different) proportion of the yield-point. In general, the 

working stress for a ductile material must be less than the yield- 

point (and usually considerably less) since most structures would 

not fulfill their function if the members of the structure were 

stressed beyond their yield-points and thus became permanently 

deformed, although they might be safe against rupture or col¬ 

lapse. (For a further discussion of this point see Art. 138.) 

Need of a Margin of Strength.—The need for selecting working 

stresses considerably less than the ultimate strength (or less than 

the yield-point) arises from (1) the uncertainties as to the prop¬ 

erties of the materials used, (2) the uncertainties as to the loads to 

be resisted by the structure or machine as a whole and also by the 

various members of the structure, and (3) the uncertainties in the 

methods of calculating the stresses in the members. The more 

these uncertainties are reduced the higher the working stresses 

may be. And, if the working stresses are increased, the amount 

5 The term factor of safety of a member has been widely used to denote 

the ratio of the ultimate strength of the material of the member to the 

working stress used in designing the member. The use of this term and 

the idea it conveys, however, is now generally conceded to be misleading 

and hence undesirable. For example, if a factor of safety of 4 is used with 

structural steel in selecting a working stress, a structure designed on the 

basis of this working stress would not resist loads four times as great as 

the loads assumed to act on the structure and to produce the working stresses. 

For further discussion, see Arts. 138 and 139. 
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of materials purchased (and hence the cost of construction) will 

decrease. 

In building constructions, working stresses have become, to a 

large degree, standardized. Thus, the building laws of most large 

TABLE 2 

Values of Working Stresses for Use with Static Loads 

(See also Table X of Chapter XVI) 

Values of stresses are expressed in lb. per sq. in. 

Material 

Type of Stress 
Proportion of 

Direct 

Tension 

Direct 

Compression 

Direct 

Shear 

Ultimate 

Strength 

Structural steel. 16,000- 

18,000 

14,GOO- 

16,000 

8,000- 

10,000 

(0.25 for tension * 

10.20 for shear 

Wrought iron. 15,000 12,000 8000 / 0.25 for tension * 

10.20 for shear 

Gray cast iron. 3,000 15,000 (0.15 foi tension 

10.20 for compression 

Timber (yellow pine). 1000 with the 

grain 

250 across the 

grain 

0.15 with the grain 

Portland cement con¬ 

crete; 1:2:4 mix. 450 .... 0.22 

* For ductile material, such as structural steel, w ought iron, etc., the working stress is 
usually thought of as a proportion of the yield-point since for such material the yield- 
point, rather than the ultimate strength, is the maximum useable strength of the material 
(see Art. 138); if this were done, the values would be 0.5 for tension and 0.4 for shear, since 
the yield-points of structural steel and wrought iron are approximately one-half of the 
ultimate strengths. 

cities specify the maximum allowable working stresses to be used 

for the common structural materials (see Table X of Chapter XVI). 

For example, a working stress of 16,000 lb. per sq. in.6 is specified 

6 When structural steel is purchased according to standard specifications, 

and subjected to rigid inspection, etc., working stresses higher than 

16,000 lb. per sq. in. (18,000 to 20,000 lb. per sq. in.) are sometimes allowed 

n tension and flexural members; for steel compressive members, however, 

the working stress is usually specified to be less than 16,000 lb. per sq. in. 

(usually from 12,000 to 14,000 lb. per sq. in.; see Art. 139). 
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by most building codes for tension members and for beams, etc., 

when made of rolled structural steel. In machine construction 

standardization of working stresses is more difficult than in 

structural work since the variety of materials used is greater and 

the conditions of service are more uncertain. However, a manu¬ 

facturing firm that builds machines of certain types is able to 

standardize the working stresses for the design and construction 

of those machines. 

The decrease in cost of construction accompanying the use of 

higher working stresses acts as a stimulus to reduce the uncer¬ 

tainties referred to above. Thus, the methods of manufacture 

and treatment of materials are being refined; tests and inspection 

of materials are becoming more rigid and more generally used; 

knowledge of the properties of materials and of the methods of 

calculating stresses in the members is becoming more extended 

and more generally applied, and experience and tests are gradu¬ 

ally yielding more definite information as to the loads that various 

types of structures and machines are subjected to in service. 

The standardization of working stresses by law and by practice, of 

course, helps greatly to safeguard the public, who use engineering 

structures such as buildings, bridges, locomotives, elevators, etc., 

against unscrupulous or incompetent engineering design. 

Factors Affecting Values of Working Stresses.—From Table 2 

it will be noted that the working stresses for cast iron and timber 

are relatively small in relation to the ultimate strength of the 

material, the reason being that these materials are less uniform in 

structure than steel. For example, cast iron may contain blow 

holes, and initial stresses due to uneven cooling; timber may con¬ 

tain knots, pitch pockets, cracks, etc., and its strength is influ¬ 

enced markedly by its moisture content. Further, for a ductile 

material such as structural steel working stresses are relatively 

larger in relation to the ultimate strength than for a brittle mate¬ 

rial such as hard steel, cast iron, etc. The reason for this is that a 

ductile material deforms or yields if subjected to unexpected over¬ 

loads or if high localized stresses occur at some portion of a member 

(and such stresses always do occur); the yielding distributes some 

of the excess stress to the surrounding materials and hence tends 

to prevent the member from breaking. (See Arts. 138 and 143 for 

further discussion.) 

The working stress for any one material is, in general, smaller 
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when the material resists impact and repeated loads than when it 

resists static loads; the reasons are that an impact load is in gen¬ 

eral less definitely known and it causes larger stresses and strains 

than does the same load when applied gradually, and localized 

stresses and non-homogeneity of material have a much greater 

influence on the strength of the member when the loads are 

repeated than when applied but once as a static load (see Art. 119 

of Chapter XIII and Art. 131 of Chapter XIV for further discus¬ 

sion). 

PROBLEMS 

20. When a force, P, of 196 lb. is applied to the bell-crank shown in 
Fig. 20, the bearing pressure normal to the rubbing surfaces of the friction 
clutch is 15 lb. per sq. in. If the coefficient of friction for the two surfaces 
is 1, what is the maximum shearing unit-stress that can be developed in the 
rectangular key if its dimensions are 1 in. wide, f in. deep and 4 in. long? 
What is the ratio of this stress to the shearing yield-point of the material if 
the key is made of structural steel? (Tensile yield-point = \ tensile ultimate 
strength; shearing yield-point = 0.6 tensile yield-point.) 

nected by pin. 

21. In the joint shown in Fig. 21, di = 2\ in., d2 = ll in., t=2 in., 6 = 1 in., 
and c = 5 in. All of the material is structural steel. If the load P is 50,000 lb. 
and if the working stress is specified to be not greater than 0.3 of the yield- 

point, does the joint satisfy the specification? (For values of yield-points, 

see statement in Prob. 20.) 
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22. A hollow gray cast-iron compression member supports loads as shown 

in Fig. 22. The member is prevented from bending by lateral supports 

(not shown). If the outside diameter is 20 in., what should be the inside 

diameter if the working stress is one-eighth (§) of the ultimate strength? 

80,000 lb. 

Fig. 22.—Hollow com¬ 
pression member. 

23. The capacity of the hook and yoke shown in Fig. 23 is 10 tons. If 
the material has a yield-point of 40,000 lb. per sq. in. in tension and six- 

tenths as large in shear, what are the ratios of the tensile stress at section A, 

and of the shearing stress in the pin to the corresponding yield-points when 

the hook is subjected to its maximum load? Ans. 0.24; 0.34. 

24. Figure 24 represents a lower panel point of a pin-connected Pratt 

truss. The post and the three eye-bars are made of structural steel having 

an ultimate strength of 65,000 lb. per sq. in. and a yield-point equal to 

one-half the ultimate strength. Find the area of each of the eye-bars using 

a working stress equal to 0.4 of the yield-point. 

Ans. up = 2.18 sq. in., gq = 3.08 sq. in. 

25. Figure 25 represents two bars of diameter d\ joined by means of a 

cotter pin, the axes of the bars being in the same straight line. The upper 

bar is enlarged at its lower end to form a hollow cylindrical socket which 

fits over the enlarged upper end of the lower bar. The two bars and the 
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cotter pin are made of structural steel. From the following data find the 

ratios of the tensile stress in the two bars, of the tensile stress in the socket, 

of the shearing stress in cotter pin, and of the bearing stress on the cotter pin 

Fig. 24.—Stresses in pin-connected truss. Fig. 25.—Socket joint 
and cotter pin. 

to the corresponding ultimate strengths of the material. The ultimate 

bearing stress may be assumed to be 80,000 lb. per sq. in. 

P = 60,000 lb.; di=2 in.; d2 = 2\ in., d3 = in., d4 = in., t = 1 in., 

and h = 3 in. 



CHAPTER II 

THIN-WALLED CYLINDERS AND SPHERES. RIVETED 
JOINTS 

8. Stresses in Thin-walled Cylinders and Spheres.—A thin- 

walled cylinder or sphere is one in which the thickness of the wall 

or shell is small in comparison with the diameter of the vessel. 

When this condition is satisfied the stress in the shell due to an 

internal fluid pressure may be considered to be uniformly dis¬ 

tributed on the cross-sectional area of the shell without intro¬ 

ducing serious errors in the calculation of the stress. Boilers, 

tanks, water and steam pipes usually may be treated as thin- 

walled cylinders, and hoops and tires that are shrunk on wheels 

may also usually be so treated. The cylinders of large guns and 

of some pipe, such as the pipes to hydraulic forging presses, etc., 

have thick walls and the stress in the walls cannot be assumed to be 

uniformly distributed without introducing a large error in the cal¬ 

culated unit-stress. 

The problem here considered is to determine the relation 

between the internal pressure in a closed thin-walled cylinder, 

the diameter of the cylinder, the thickness of the shell, and the 

intensity of stress in the shell (a) on a longitudinal section and (6) 

on a transverse section. 

Stress on a Longitudinal Section.—Fig. 26(a) represents a por¬ 

tion of a thin-walled cylinder that is subjected to an internal 

fluid pressure of intensity R, the length of the portion being l. 

Let the diameter of the cylinder be denoted by D, the thickness of 

the shell by t, and the intensity of the tensile stress in the shell 

by st. 

The pressure of the fluid on the internal surface of the cylinder 

at any point is normal to the surface at that point, as indicated in 

Fig. 26(a), and these internal pressures tend to rupture the cylinder 

on a longitudinal section (at AB and EF, Fig. 26a), the resultant 

30 
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pressure (or load) on one-half of the shell (Fig. 26b) being resisted, 

and held in equilibrium, by the total stresses P, P exerted by the 

other half of the shell at the areas AB and EF. Hence from 

equilibrium we have, 

Resultant horizontal pressure or load = total resisting stress. 

An expression for the resultant horizontal pressure on the half¬ 

shell may be found as follows: The resultant horizontal pressure 

on the semi-cylindrical area, a, of the half-shell (Fig. 266) is the 

sum of the horizontal components of the pressures on the ele- 

Fig. 26.—Stress on longitudinal section of thin-walled cylinder. 

mentary areas; the pressure on an elementary area da is Rda and its 

horizontal component is Rda cos 0, and hence the resultant horizon¬ 

tal pressure is equal toj^Rda cos 0,which may be written, rJ< da cos 0 

since the pressure R is the same at all points in the semi- 

cylindrical area, a. But da cos 0 is the area formed by projecting 

the area da on a vertical plane and hence Jda cos 0 is the area 

formed by projecting the semi-cylindrical area on a vertical plane, 

and is, therefore, equal to Dl. Thus, the resultant horizontal 

pressure is Rdl. 
Further, since the shell is thin, the total resisting stress, 2P, 

may be assumed to be distributed uniformly over each of the two 
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areas, and hence 2P = 2atst = 2ltst. Therefore, the above equation 
becomes 

Whence, 
RDl = 2ltst. 

RD 

S,= ~2t- 
(11) 

Stress in Transverse Section.—The total pressure of the 
fluid against the end of the cylinder must be resisted by 

Fig. 27.—Stress on traverse section of 
thin-walled cylinder. 

the total stress on a trans¬ 
verse section of the cylinder 
as indicated in Fig. 27. Now 
the total pressure against the 

end of the cylinder is R 

and the total resisting stress 
is 7rDt-st. Hence from the 
condition of equilibrium we 
have, 

whence, 

R^=*Dt 
4 

RD 
41 ‘ 

(12) 

In (11) and (12) R and st must be expressed in the same units 
(usually pounds per square inch), and 
D and t must be expressed in the same 
units (usually inches). 

A comparison of equations (11) and 
(12) shows that the intensity of stress 
on a longitudinal section of a thin-walled- 
cylinder due to an internal fluid pres¬ 
sure is twice as great as that on a 
transverse section of the same cylinder. 
This fact explains why the riveted joint 
connecting the plates of a boiler along 
a longitudinal seam requires more rivets than that along a trans¬ 
verse seam. 

Equation (12) may be used also to find the unit-stress in a thin- 
walled sphere due to internal fluid pressure as will be evident 

Fig. 28.—Stress in thin- 
walled sphere. 
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when the method used above in determining the stress in a thin- 
walled cylinder is applied to a thin-walled sphere as represented 
in Fig. 28. 

PROBLEMS 

26. A boiler is subjected to an internal pressure of 80 lb. per sq. in. and 

is 48 in. in diameter, (a) What is the total stress acting on (or transmitted 

across) each of the two longitudinal cross-sectional areas of the plate or 

shell in a length of 3 in. along the boiler? (b) What is the unit-stress 

developed in the shell if the thickness of the shell is \ in.? 

27. A standpipe 6 ft. in diameter is 60 ft. high. When it is full of water, 

what is the circumferential unit-stress in the plate at the bottom of the stand¬ 

pipe if the thickness of the plate is f in.? Hint: Since water weighs 62.5 lb. 

per cu. ft., the pressure (in all directions) at the bottom of the standpipe is 

62.5X60 lb. per sq. ft. Ans. s = 2500 lb. per sq. in. 

28. The pressure in the cylinder of a steam-engine (Fig. 29) is 120 lb. 

per sq. in. and the internal diameter, D, of the cylinder is 14 in. How 

many f-in.bolts are required for strength 

if the tensile unit-stress is not to exceed 

8000 lb. per sq. in.? What should be the 

thickness, t, of the walls of the cast-iron 

cylinder to satisfy the requirement for 

strength if the allowable tensile stress is 

8000 lb. per sq. in.? Note.—The allow¬ 

able stresses are taken low due to the 

fact that the load is applied with more 

or less impact. Further, the requirement 

for strength in many problems is not the 

governing requirement. In this problem, 

for example, the bolts should be large 

enough to prevent a workman, with or¬ 

dinary tools, from twisting the heads off. Further, the requirement for tight¬ 

ness of the joint may determine the number of bolts. Similarly, the thick¬ 

ness of the wall may be influenced by the considerations of heat loss or of 

ease and reliability in casting, etc. 

29. Water pipes are frequently made of cast iron. According to specifica¬ 

tions a pipe 18 in. in diameter must have a wall thickness of 0.87 in. and 

must resist an internal pressure of 300 lb. per sq. in. What circumferential 

unit-stress is developed in the pipe? Ans. s = 3100 lb. per sq. in. 

30. The steel tire for a locomotive driving-wheel has an internal diameter 

TsVo ‘d less than that of the wheel on which the tire is to be shrunk, where 

d is the diameter of the wheel. The value of d is 60 in. and the value of t, 
the^thickness of the tire, is f in. If it is assumed that after the tire is shrunk 

Fig 29.—Steam cylinder and 
piston. 
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on the wheel the diameter of the wheel is not changed by the pressure of 
the tire, find (1) the elongation of the tire, (2) the tensile unit-stress (hoop- 
tension) in the tire, and (3) the intensity of the pressure of the tire on the 
wheel. Am; (1) e = 0.126in., (2) s = 20,000 lb. per sq. in., 

(3) R = 500 lb. per sq. in. 

Riveted Joints 

9. Introduction.—Riveted joints are important structural 

elements in buildings, bridges, cranes, etc., and also in pressure 

vessels such as boilers, tanks, water pipes, etc. 

The load causing the stresses in the various parts of a riveted 

joint (shearing stress in the rivets, bearing stress on the rivets, 

tensile stress in the plate, see Fig. 32) is usually assumed to act 

through the centroid of the area on which the stresses occur, and 

hence the stress on the resisting area is assumed to be uniformly 

distributed. This assumption, however, must be regarded as a 

rough approximation only, since, as discussed in Art. 13, the load 

on a riveted joint is seldom distributed evenly to the rivets; how¬ 

ever the design of the simpler types of joints are usually based on 

this assumption. The stresses in riveted joints produced by eccen¬ 

tric loads are discussed in Chapter X, but eccentric loads, when¬ 

ever possible, should be avoided. 

According to the above assumption the stresses in a riveted 

joint may be found from the equation developed in Chapter I for 

a central load; namely, P = as, in which P is the central load trans- 

mited from one to the other of two plates that are connected by 

the rivets, and s is any one of the various unit-stresses (shearing, 

bearing, tension, etc.) that may be the cause of the failure of the 

joint (as discussed in Art. 11) and a is the area on which the stress 

is distributed. 

10. Types of Riveted Joints. Definitions.—It is convenient 

to divide riveted joints into two general groups; (1) structural 

joints used in connecting members in bridges, buildings, cranes, 

and other structures, and (2) boiler, tank, or pipe joints used in 

connecting plates in various types of pressure vessels. In struc¬ 

tural joints, strength is the main requirement whereas in boiler 

and pipe joints tightness in addition to strength must be con¬ 

sidered. 

Two types of joints are widely used for both the groups men¬ 

tioned above; namely, lap joints and butt joints (see Fig. 30), 
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and both lap and butt joints may be single riveted, double riveted, 

triple riveted, etc.,-according as one, two, three, etc., rows of 

rivets pierce each of the two plates that are connected. Further, 

a butt joint may have two cover plates (or straps) or only one 

cover plate. Again, both lap and butt joints may have the rivets 

arranged in the form of chain riveting (Fig. 306 and 30c) or in the 

form of staggered riveting (Fig. 30d and 30e). 

Definitions.—The terms defined below will be used frequently 

in the subsequent articles. 

The 'pitch of a row of rivets is the distance between the centers 

(f: 
-c!> 

N* 

(a) Single riveted lap joint (6) Double riveted lap joint (c) Single riveted butt joint 

(c?) Double riveted butt joint 

Fig. 30.—Types of riveted joint. 

of any two adjacent rivets in the row. The pitch is not necessarily 

the same for all rows. Thus, in Fig. 30c the pitch for the inner 

rows is denoted by p and for the other row by p\ in which pi 

equals 2p. 

The transverse pitch is the distance between the center lines of 

two rows of rivets, denoted by pt in Fig. 30(d), and the diagonal 

pitch in staggered riveting is the distance from the center of a 

rivet in one row to that of the nearest rivet in the next row, 

denoted by pd in Fig. 30(d). 

The length of a repeating group of rivets is used in connection 

with boiler and pipe joints to denote the shortest distance along the 
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joint that includes a characteristic group of rivets which recurs 

along the length of the joint. The length of the repeating group 

is usually equal to the pitch, the maximum pitch being used when 

the pitches of all rows are not the same. In computations it is 

convenient to use the force transmitted through the repeating 

group of rivets rather than that transmitted through the entire 

length of the joint. 

The margin of a plate in a riveted joint is that part of the plate 

between the edge of the plate and the center line of the nearest 

row of rivets. 

A gusset plate or splice plate is a plate used in structural joints 

to form part of the joint in connecting two or more members of a 

structure (see Fig. 336). It corresponds to a cover plate or strap 

in a boiler or pipe butt joint. 

Auxiliary piece is a term used to denote any plate or other piece 

which is used in addition to the rivets and the main plates or mem¬ 

bers to form the joint. Thus, a gusset plate or a column bracket 

(Fig. 35) is an auxiliary piece. 

The term efficiency of a riveted joint is used in connection with 

boiler and pipe joints to denote the ratio of the strength of the 

joint to the strength of the solid plate. It is customary to use 

the working or allowable strengths (not allowable unit-stresses) 
rather than the maximum or ultimate strengths in calculating the 

efficiency. 

11. Modes of Failure.—A riveted joint may fail in any of the 

following ways: 

1. Shearing of the rivets as indicated in Fig. 31(a). 

2. Rupturing of the plate on a section through a line of rivets 

or on a section along a diagonal pitch as indicated in Fig. 31(6). 

3. Crushing of the rivets (or of the plate) due to the pressure 

of the plate on the side of the rivet (or of the rivet on the plate) as 

indicated in Fig. 31(c). This pressure is called the bearing pres¬ 

sure. 

4. Shearing of the plate in the margin or tearing of the plate 

in the margin, as indicated in Fig. 31(d). A marginal failure 

is usually a combination of these two actions. 

In joints having several rows of rivets the failure may be a com¬ 

bination of the above failures, as for example the rupturing of the 

plate along one row of rivets accompanied by the shearing of the 

rivets in another row. 
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The width of the margin can be fixed arbitrarily (except as it 

affects calking of a boiler joint to secure tightness) and experi¬ 

ence has shown that if the width of the margin is 1§ to 2 times 

the diameter of the rivet the joint will not fail in the margin. 

Further, experience has shown-that failure along a diagonal will 

not occur if the transverse pitch is not less than If times the diam- 

ter of the rivet. It is evident therefore that if these conditions 

are satisfied the only stresses that need investigation in a riveted 

joint are (1) the shearing stress in the rivets, (2) the tensile stress 

in the plate on a section through a row of rivets, and (3) the bear¬ 

ing stress on the rivet (or on the plate). 

12. Stresses in Riveted Joints.—As noted in Art. 9 the equa¬ 

tion P = as is used in the analysis of the stresses in a riveted joint 

Fig. 31.—Modes of failure of riveted joints. 

in which the load on the joint is assumed to act through the cen¬ 

troid of the rivet areas, the stress on each area then being assumed 

to be uniformly distributed. 

In the equation P = as as applied to riveted joints, 

P, for a structural joint, is the force that is transmitted from 

one member of a structure to another member, and, for a boiler or 

pipe joint it is usually the force transmitted through a repeating 

group of rivets. 

The kind of stress s will be denoted by a subscript. Thus, s3 
denotes the shearing unit-stress in the rivets; st, the tensile unit- 

stress in the plate; and Sb the bearing unit-stress on the rivet. 

Similarly as denotes the shearing area on which occurs, at the 

tensile area on which st occurs; and a& the bearing area on which sb 
occurs. 
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Other quantities used are defined as follows: 

t is the thickness of the main plates or members; 

d is the diameter of the rivets; 

p is the pitch of the rivets. 

To illustrate the method of determining the stresses in a riveted 

joint one particular joint will here be used; the method, however, 

is the same for all joints. Fig. 32(a) represents a double-riveted 

two-strap butt joint, in which it is desired to find the shearing, 

tensile and bearing unit-stresses in terms of the load P and the 

dimensions, t, d and p. 
Shearing Unit-stress.—The load P is held in equilibrium, as 

shown in Fig. 32(6), by the total resisting shearing stress, which is 

the product of the shearing unit-stress ss and the area as on which 

the shearing stress occurs. And since each of the two rivets has 

two shearing areas, as is equal to —T~. Hence 

P = asss = 4-^-s8 or ss 
= P_ 

nd2' 
• (13) 
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It should be noted that if the above joint were a lap joint, each 

rivet would have only one shearing area, and hence the total area 

would be 2^f- instead of 4^-. 
4 4 

Tensile Unit-stress.—The total tensile resisting stress, atst, 
in the plate which holds the load P in equilibrium (see Fig. 32c) 

is the product of the area at} or (p-d)t and the tensile unit-stress st. 
Hence 

P = atst= {p—d)ist or 
P 

S‘~ (p-d)t' 
(14) 

Bearing Unit-stress.—The total bearing stress of the plate on 

the rivets which resists the load P (Fig. 32d) is the product of the 

bearing unit-stress sb and the bearing area ab on which the stress 

is assumed to be uniformly distributed. The area of contact be¬ 

tween the rivet and plate is a semi-cylindrical area and although 

the intensity of the pressure and the direction of the pressure prob¬ 

ably vary greatly over the area, the manner of variation is un¬ 

known. Only the component pressure parallel to the load P resists 

this load, and it is usually assumed that this component pressure 

is uniformly distributed over an area equal to the projection of 

the semi-cylindrical area of contact on a plane perpendicular to 

the direction of P, that is, an area equal to the product of the 

diameter of the rivet and the thickness of the plate. Hence, as 

indicated in Fig. 32d, 

P = absb = 2id sb or . . (15) 

As noted above, the load P in boiler joints usually is taken as 

the load that is resisted by a repeating group of rivets and in 

structural joints it is the total force transmitted from one member 

to another. 

ILLUSTRATIVE PROBLEMS 

Problem 31. The members of the Fink truss shown in Fig. 33(a) are con¬ 

nected by riveted joints. The arrangement of the joint at C is shown in 

Fig. 33(6). The stress in members BC and DC are found to be 6930 lb. 

compression and 6930 lb. tension respectively. The rivets are § in. in 

diameter. Find the shearing unit-stress in the rivets connecting the 

members BC and DC to the gusset plate, and in the rivets connecting the 
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gusset plate to the lower chord AC EG. Also find the bearing unit-stress of 

the members BC and DC on the rivets. 

6930 lb. 
8000 lb. 

Fig. 33.—Riveted joint in truss. 

Solution.—The shearing unit-stress in the rivets connecting members BC 
and DC to the gusset plate is 

6930 

2X0.44 
= 7870 lb. per sq. in., 

the area of cross-section of a f-in. rivet being 0.44 sq. in. 

The bearing unit-stress of the members BC and DC (or of the gusset 

plate) against the rivets is 

P 6930 
Sb = — =-= 12,300 lb. per sq. m. 

db 2X?Xs 

The shearing unit-stress in the rivets that connect the gusset plate to 

the lower chord is 

P 2X6930 cos 60° 

as~ 3X0.44 

6930 

F32 
= 5240 lb. per sq. in. 

The bearing unit-stress of the lower chord on the three rivets is 

P 6930 
Sb = — =-;—- = 8210 lb. per sq. in. 

ab 3X|Xf 

Problem 32.—A boiler having a diameter, D, of 72 in. is designed to resist 

an internal steam pressure, R, of 120 lb. per sq. in. The longitudinal joint 

is a double-riveted lap joint. The thickness, t, of the plates is in., the 

diameter, d, of the rivets is f in., and the pitch, p, is 3| in. Find the 

shearing, tensile, and bearing unit-stresses in the joint. Also calculate the 

efficiency of the joint, assuming the allowable shearing, tensile, and bearing 

unit-stresses (in lb. per sq. in.) to have the following values: ss = 10,000, 

= 15,000, Sb = 22,500 (see Art. 14). 
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SolutiDn.—According to Art. 8 and as indicated in Fig. 34(a) the force P 

transmitted through the joint for a pitch distance p of in. along the joint, 

that is, through a repeating group of rivets (two rivets) is 

P = %RDp 

= 5X120X72X35 

= 15,120 lb. 

The shearing unit-stress in the 

rivets then, is 

P 15,120 
ss = —“ = -———- = 12,600 lb. per 

2tt<P 2X0.60 

1 4 

sq. in. 

The tensile unit-stress in the 

plate on a section through either 

row of rivets is 

P 15,120 

(p—d)t (3£ — 1)Xt6 
13,200 

lb. per sq. in. 
Fig. 34.—Stress in boiler joint. 

The bearing unit-stress of the plates against the rivets is 

Sb = 
15,120 

= 19,800 lb. per sq. in. 

Efficiency = 

2-d-t 2X%Xi6 

least allowable strength of joint 

allowable strength of solid plate* 

ird2 
2—X10,000 , 

4 TO2 
Shearing efficiency es =-, „ ^ =   X f = 0.524 = 52.4 per cent. 

p-M5,000 2p-t 

(p—d)t 15.000 p—d 
Tensile efficiency et —-— =-= 0.75 = 75 per cent. 

p-t-15,000 p 

2 -dl- 22,500 2d 3 
Bearing efficiency =-= — X- = 0.75 = 75 per cent. 

p-M5,000 p 2 

Therefore, the efficiency of the joint is 52.4 per cent. If the joint were well 

proportioned the three efficiencies would be more nearly equal. 

PROBLEMS 

33. A boiler 30 in. in diameter is designed to withstand a pressure of 

50 lb. per sq. in. The longitudinal joint is a single-riveted lap joint; the 
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rivets have a pitch of 3 in.; the plates are f in. thick and the rivets are 8 

in. in diameter. Find the shearing, tensile, and bearing unit-stresses in 

the joint. Also find the efficiency of the joint, using the allowable unit- 

tressses in stated Prob. 32 and Art. 14. 

34. A column bracket (Fig. 35) consisting of a 6-in. by 6-in. by f-in. angle 

carries a load of 20,000 lb. and is riveted with five rivets f in. in diameter to 

a 12-in., 30-lb. channel which forms part of a 

column. The thickness of the web of the 

channel is \ in. Find the shearing unit-stress 

in the rivets and the bearing unit-stress of the 

angle on the rivets. 

Ans. ss = 66701b. per sq. in., s& = 12,200 lb. 

per sq. in. 

35. A bridge post, Fig. 36, consists of two 

10-in., 25-lb. channels latticed together. The 

total compressive stress P in the post is 275,- 

000 lb. The post transmits this stress to a 

pin 6 in. in diameter by means of the bearing 
-in. pin- 

Fig. 35.—Column bracket. Fig. 36.—Column 
bearing on pin. 

plates riveted to each channel, the thickness of each web being 0.53 in. The 

rivets are f in. in diameter. Find the shearing unit-stress in the rivets and 

the bearing unit-stress on the pin. 

36. The plates of a tank 60 in. in diameter are f in. thick and are spliced 

by means of a double-riveted butt joint with two strap-plates. The strap- 

plates are § in. thick. The rivets are staggered; the two lines are 3 in. apart, 

and the pitch on each line is 3§ in. The rivets are | in. in diameter. If 

the allowable unit-stresses are: ss = 10,000 lb. per sq. in., st = 15,000 lb. per 

sq. in., and s& = 22,500 lb. per sq. in., what is the maximum internal pressure 

to which the tank can be subjected. Ans. R = 228 lb. per sq. in. 

37. A boiler 60 in. in diameter resists an internal pressure of 180 lb. per 

sq. in. The plates are f in. thick and are spliced by means of a double-riveted 

butt joint with two strap-plates. The strap-plates are f in. thick and the rivets 

are staggered; the two lines are 3 in. apart and the pitch on each line is 
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also 3 in. The rivets are £ in. in diameter. Find the shearing, bearing and 

tensile unit-stresses. 

Ans. ss = 6750 lb. per sq. in., Sb —12,350 lb. persq. in., st = 10,160 lb. per sq. in. 

Fig. 37.—Riveted joint in truss. 

38. In Fig. 37(6) is shown a joint that occurs in a riveted Pratt truss as at 

D in Fig. 37(a). If the rivets are f in. in diameter and the allowable shearing 

unit-stress is 10,000 lb. per sq. in., what maximum values can Pi and P2 have? 

What is the bearing unit-stress on the rivets if the gusset plate and the angles, 

are f in. thick? 

39. A triple-riveted lap joint is made of ^ in. plates. The diameter of the 

rivets is 1 in.; the pitch in the outer rows is 44 in.; the pitch in the inner row 

is 2\ in. and the distance between the rows of the rivets is 2\ iii. (a) What 

is the efficiency of this joint ? (6) If this joint is the longitudinal seam of a. 

90-in. tank, what is the maximum allowable internal pressure ? Use values 

for allowable unit-stresses stated in Prob. 32 and Art. 14. 

Ans. et = 77.8%, P = 108 lb. per sq. in. 

40. A boiler 100 in. in diameter, having plates £ in. thick, is subjected fc> 

an internal steam pressure of 160 lb. per sq. in. The longitudinal joint is a 

double-riveted butt joint with two cover plates. The diameter of the rivets 

is £ in. and the pitch is 3 in. Find the bearing, shearing, and tensile unit- 

stresses in the joint. 

13. Assumptions. Conditions Affecting Strength of Riveted 
Joints. Friction.—Since the rivets in a joint shrink while cooling, 
the plates are drawn tightly together which in turn causes friction 
between the plates when the joint is stressed. Tests1 have shown, 
however, that slipping may occur at ordinary working stresses. 
Further, in any case, the amount of the friction is indeterminate, 
and hence the assistance obtained from the friction is usually 
neglected in the design of joints. 

Bending and Tension.—In the design of a riveted joint, the 
assumption is usually made that only shearing stresses exist on a 

1 Bulletin 49, Engineering Experiment Station, University of Illinois. 
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cross-section of a rivet. The rivet, however, is always subjected 

to more or less bending, and the bending may have an important 

influence on the stresses in long rivets that connect several plates 

as indicated in Fig. 38. And, in 

a simple lap joint, bending also 

occurs as is indicated in Fig. 39. 

The effect of bending, however, 

is not disastrous if the material 

is ductile. Its influence in the 

design of the simpler types of 

joints is taken account of to 

Fig. 38.—Bending in rivet. Fig. 39.—Bending in rivet. 

some extent in selecting the values of the working unit- 

stresses. 

Occasionally rivets must resist a direct tensile load as in the 

arrangement shown in Fig. 40. The 

allowable tensile stress in rivets should 

always be low and the thickness of the 

head of the rivet should be investigated 

to see if the shearing area in the head is 

ample; the contraction of the rivet dur¬ 

ing cooling causes stress in the rivet of 

unknown amount, but sufficient some¬ 

times to cause the rivet head to snap 

off. Hence, rivets are not considered 

reliable for resisting direct tension. 

Rivets are cheaper than bolts, other¬ 

wise bolts would be more generally used 

since.they can be made safe in bending Fig. 40.—Rivets subjected to 

and tension as well as in shear. How- tensile stress, 

ever, with the. vibration that occurs in 

many structures it is difficult to keep the nuts of the bolts tight, 

and even the best nut-locks should be inspected frequently. 

Rivet Holes.—Rivet holes are usually formed by punching the 

plates cold, for, although holes made by drilling are preferable, 
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punching is the cheaper process. There are two objections to 

punching the hole: (1) The holes seldom come into exact align¬ 

ment or register since only one plate can be punched at a time, and 

in order to cause the holes to register it is frequently necessary 

to ream out one or both holes or to use a drift pin. The latter 

method is particularly objectionable, but by either method the 

holes are enlarged and the rivets may not fill the holes, thereby 

causing excessive stress on some of the other rivets; (2) the 

tensile strength of the material around the hole is reduced due to 

the injury of the material accompanying the lateral flow of the 

metal caused by the punch. 

Both of these difficulties may greatly be reduced by making 

the punched holes somewhat under-size and then reaming them 

to the correct size, after the plates or members are out together. 

Plates are seldom punched and used in their natural punched con¬ 

dition except in the case of thin plates and in the cheaper classes 

of work. The injury done to the plate by punching may be 

partially remedied by thorough annealing; it is generally im¬ 

practicable, however, to anneal portions of large sheets merely for 

the sake of the rivet holes. Splice bars used in connecting railroad 

rails are frequently punched cold and then the whole bar annealed 

instead of being punched hot. In the best classes of marine work 

the law requires that all rivet holes shall be drilled from the solid 

plate, but the specifications for most structural work and for many 

pressure vessels require the holes to be punched small and reamed 

to the correct size. In obtaining the tensile unit-stress in a plate 

in which the holes are punched to size (not reamed) the diameter 

of the hole is sometimes assumed to be yg- inch larger than that of 

the punched hole. 

Methods of Riveting.—In structural work the riveting of some of 

the joints is done in the shop, whereas other joints must be riveted 

in the field during the erection of the structure. Shop riveting is 

usually done by machines which press the rivet in place and when 

well done is better than hand riveting. Since the rivet is a little 

smaller than the hole, the rivet while being driven, must be ex¬ 

panded throughout its whole length if it is to fill the hole, which is 

a necessary requirement for a good joint. Large rivets, therefore, 

almost always are machine riveted in order to obtain the heavy 

pressures required. 

Specifications usually require that the allowable unit-stresses 
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for hand-driven field rivets shall be less (often one-third less) than 

for machine-driven shop rivets since the conditions in the field are 

difficult to control. For example, the heating of the rivets varies; 

some rivets are burned, others are underheated and may be too 

cool when driven to be made to fill the hole, etc. 

In designing joints the rivet is assumed to fill the hole and hence 

the stress, in compression members, is not increased due to having 

rivet holes in the member as is the case in tension members. 

Distribution of Load Among Rivets.—If the load on a joint is a 

central load (passes through the centroid of the group of rivets) 

the assumption is made that the load is distributed equally to all 

the rivets (see Art. 89 for a discussion of eccentric loading). 

Obviously, it is impossible for the load to be distributed in this way, 

since the load on the rivets in one row depends on the yielding of 

the rivets in the row nearer to the load and also on the yielding of 

the plate between the rows, etc. The distribution of the load, 

therefore, is not easily determined, particularly in joints having 

several rows of rivets. But, in the absence of definite information 

the assumption stated above is used, particularly in the case of the 

simpler types of joints. 

14. Allowable Stress.—The discussion, in the preceding articles, 

of the uncertainties in the actions occurring in joints should make it 

evident that the selection of the working or allowable unit-stresses 

in shear, tension, and bearing should be based not only on the 

strength of the materials of which the joint is made, but also on the 

results of tests of actual joints. Many tests on riveted joints 

have been made, and tests and experience indicate that in the 

design of joints of the usual proportions and with the methods of 

calculating stresses already discussed, the values of working 

stresses given below may be used. In using these values it is 

understood that the members or plates to be riveted meet the 

specifications for structural steel or boiler plate, etc., and that the 

rivets meet a similar requirement for rivet steel. Further, it is 

assumed that the rivet holes are punched small and reamed to 

size or are drilled from the solid plate, and that the rivets are shop 

driven. For joints having field-driven rivets or having holes 

punched to size (not reamed) the values given below should be 

reduced. 

Shearing unit-stress in rivets; ss = 10,000 lb. per sq. in. 

Tensile unit-stress in plate; st = 15,000 lb. per sq. in. 
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Bearing unit-stress on/ivets; s& = 22,500 lb. per sq. in. 

Bearing unit-stress on pins; s& = 22,500 lb. per sq. in. 

Compressive unit-stress in members; sc = 15,000 lb. per sq. in. 

Thus the ratios of the shearing and bearing allowable unit- 
stresses to the tensile allowable unit-stress are as follows: 

s&_3 

st 2* 

These ratios are convenient for use in calculations in design. 

PROBLEMS 

41. In an ideal boiler or pipe joint the allowable strength (not allowable 

unit-stresses) in shear, bearing, and tensile are equal, (a) By equating the 

allowable shearing strength to the allowable bearing strength show that the 

diameter of the rivets in a lap joint is 2.87 times the diameter of the rivets 

(d = 2.&7t). (b) Similarly, show that in an ideal butt joint having two cover 

plates, d = 1.43£. Which of these two types of joints is better suited for boilers, 

pipes, etc., having thick plates ? Hint: If n represents the number of rivets 

we have for (a) 

7r^2 , 4 sb n-=ntdsb or a=-1. 
4 TT St 

42. By equating the allowable tensile strength to the allowable bearing 

strength show that the pitch in an ideal double-riveted lap joint is four times 

the diameter of the rivets (p = 4d). Also show that the efficiency of an ideal 

double-riveted lap joint is 75 per cent. 

43. Find the relation between p and d, and also the efficiency, of an ideal 

double-riveted butt joint having two cover plates. 



CHAPTER III1 

ELEMENTARY COMBINED STRESSES AND COMBINED 

STRAINS. RESILIENCE 

15. Introduction.—The intensities of stress that are most 

easily calculated directly from the loads on a member by use of the 

equations in the preceding chapters and those immediately follow¬ 

ing may not be the most significant stresses to which the member 

is subjected. Thus, if the intensity of stress at a point on one or 

more given planes in a body is known, it may be desired to de¬ 

termine the intensity of stress at the same point but on another 

plane passing through the point. Likewise, the relations between 

the strains in various directions may be desired. A more detailed 

discussion of these topics is given in Chapter XII. 

16. Stresses on Oblique Section.—If an axial load P is applied 

1 r 

0 
/ 

d/ 
/a' 

a 

1 

1 [Pc«> (0 (P) (d) 

Fig. 41.—Stresses on oblique plane. 

to a bar (Fig. 41a), the total stress, Q (Fig. 416), on a cross-section 

perpendicular to the direction of the load is uniformly distributed 

on the area and hence is equal to the product of the area, a, of the 

1 This chapter may be omitted without causing difficulties for the student 

except, perhaps, in Chapter XII. It is strongly recommended, however, that 

Art. 16 be studied and as many more as time will permit. 

48 
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section and the constant unit-stress, s. Further, since Q holds P 

in equilibrium it must be equal to, and collinear with, P and hence 

must pass through the centroid of the area a, that is, P=Q = as. 

Now, if an oblique plane is passed through the centroid, 0, of 

the area a and the lower part of the bar is removed (Fig. 41c), the 

total stress on the oblique area a' must likewise be Q in order to 

hold P in equilibrium. But Q is inclined to the area a' and, for 

convenience, will be resolved into normal (tensile) and tangential 

(shearing) components, Qn and Qs respectively (Fig. 41c), and 

since these components pass through the centroid of the area a' 

the normal and shearing intensities of stress, sn and ss on the areas 

a' are constant (Fig. 41d). Hence, the following equations^may 

be written: 

Qn = 0'Sn~ a^ri) and Qs = 0'^8== ~ 
cos 0 .cos 0 

But 
Qn = Q cos 6 = P cos 0 and Qe=Q sin 0 = P sin 0. 

Therefore, 

P cos 0=• a sn and P sin 6= a -ss 
cos 0 cos 0 

or 
P P IP. 

sn = — cos26 and ss = — sin 0 cos 0 = - — sin 20, (16) 
a a 2 a 

from which the normal and shearing unit-stresses 

on any section inclined at an angle 0 to the sec¬ 

tion on which the maximum normal stress occurs 

may be found. Now sn will be a maximum 

when 0 is zero, that is, on the plane perpendicu- 

P 
lar to P, and its value is s = — which agrees with 

the value found in Art. 3. The maximum value 

of ss in the above equation, however, occurs 

when 0 is 45° and hence, 

maximum value of ss = - —. 
z a 

Thus the maximum value of the shearing unit- Fig. 42-Stresses on 

stress in a bar subjected to an axial tensile itf teSon ^menT 

(or compressive) load is equal to one-half the ber. 

maximum normal stress developed in the bar, 

and it occurs on planes making angles of 45° with the plane on 
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which the maximum normal stress occurs. But, since the shear¬ 

ing strength of many materials is much less than the tensile or 

compressive strength, the shearing unit-stress developed may be 

the more significant stress. The stresses acting on the faces 

of a small block in the bar, the faces of the block being per¬ 

pendicular and parallel to the direction of P, are shown at A 

in Fig. 42, and the stresses on a block having faces making 

angles of 45 degrees with the direction of P are shown at B in 

Fig. 42. 

PROBLEMS 

44. A brick 2 in. by 4 in. by 8 in. is tested in compression by applying an 

axial load on its 2-in. by 4-in. ends. If the ultimate compressive and shearing 

strengths are 3000 lb. per sq. in. and 1000 lb. per sq. in., respectively, will the 

brick fail when subjected to a load of 20,000 lb.? 

45. A structural steel bar f in. in diameter and 10 in. long is subjected to 

an axial tensile load of 12,000 lb. (a) Find the tensile and shearing unit- 

stresses on a plane making 60° with the direction of the load. (6) Find the 

maximum shearing unit-stress. 

Ans. (a) sn = 20,300 lb. per sq. in.; $s = ll,700 lb. per sq. in. (6) 

Ss = 13,600 lb. per sq. in. 

46. Show that when a bar is subjected to an axial load the normal unit- 

1 P 
stress, sn, on the section having the maximum shearing unit-stress is-, and 

2 a 
hence has the same value as the maximum shearing unit-stress (see Fig. 42). 

47. Show that the forces (stresses) ss and sn acting on the faces (unit-areas) 

of the cube B in Fig. 42 cause an intensity of stress on the horizontal diagonal 
P 

plane through the cube equal to s or —. 
a 

17. Shearing Stresses on Planes at Right Angles. Simple 

Shear. Proposition.—If a shearing stress of intensity ss occurs on 

a plane at a given point in a body there must exist a shearing stress 

of equal intensity at that point on a plane at right angles to the 

first plane. 

Proof.—Let an elementary rectangular block (Fig. 43a) be 

removed from a body in which the block is subjected to shearing 

stresses on a pair of parallel faces, such as faces AB and CD or 

faces AC and BD. For example, the block may be in a bolt as 

shown in Fig. 43(6), where the part X causes a shearing stress of 

average intensity sh on the horizontal plane AB of part Y, and the 
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part Z exerts a resisting stress of equal intensity on the face CD. 

Similarly, the part X of the shaft in Fig. 43(c) causes an average 

shearing unit-stress sv on the vertical plane BD and the part Z 

of the shaft exerts an equal resisting or opposite stress on the face 

AC. 

Now the shearing forces acting on a pair of faces form a couple 

and since the block is in equilibrium when in the body, there must 

be shearing forces on the other pair of faces such that the moments 

of the two couples are equal. If the depth of the block perpen¬ 

dicular to the paper is assumed to be unity, then 

ABsh • BD = BDsv • AB 

whence 

Sh==Sv. . ..* (18) 

(a) (6) (c) 

Fig. 43.—Shearing stresses of equal intensity on planes at right angles 
to each other. 

Now if the dimensions of the block are considered to be indefi¬ 

nitely small, sh and sv may be considered to be the stress at a point. 

That is, the intensities of the shearing stresses on planes at right 

anglers to each other at any point in a body are equal; and this is 

true also when normal stresses act on the planes in addition to 

shearing stresses, as is illustrated in Fig. 42. If shearing stresses, 

only, occur on the two planes at any point in the body, the body at 

that point is said to be in a state of simple shear or of pure shear. 

18. Tensile and Compressive Stresses Resulting from Simple 

Shear. Proposition.—If a state of simple shear exists at a point 

in a body (as in Fig. 43c) there also exists normal (tensile and 

compressive) stresses on planes that bisect the planes on which the 

shearing stresses occur, and the intensities of the normal stresses 

are equal to those of the shearing stresses. 

Proof.—Let a diagonal plane AD be passed through the block 

of Fig. 44(a), or Fig. 43(a); the forces acting on one part of the 
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block are shown in Fig. 44(6). The face of the block in Fig. 44 is 

assumed, for convenience, to have a thickness (perpendicular to 

the plane of the paper) of unity. The force on each face is equal 

to the area of the face times the unit-stress on that face, and since 

the block ABD (Fig. 446) is in equilibrium, we have, by resolving 

the forces in the x-direction, 

ADst=ABss cos 45°+55s. cos 45° = ss(AB cos 45°+BD cos 45°) 

but 

Therefore, 

Similarly, from Fig. 44(c) 

AB cos 45°-f-Z?.Dcos 45° = AD. 

St~ ss. 

(19) 

Fig. 45.—Brittle material when subjected to torsion fails in tension. 

Thus when a brittle material such as cast iron, which is weak 

in tension, is twisted as in Fig. 43(c) and Fig. 45(a) the material 

fails intension on a plane inclined (approximately 45°) to the planes 

on which the shearing stresses occur, as indicated in Fig. 45(6).2 

2 The student may perform an experiment on a crayon of chalk to show the 

action indicated in Fig. 45. 
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19. Principal Stresses.—With any combination of stresses at 

a point in a body three planes can be found passing through the 

point, on which only normal stresses exist; the normal stresses on 

these planes, on which no shearing stresses occur, are called 

principal stresses. In many problems in the following chapters 

two of the three principal stresses are equal to zero; in some prob¬ 

lems only one of the principal stresses is equal to zero. 

Maximum normal stresses are always principal stresses, and 

hence principal stresses are of much importance in engineering 

problems; they will be discussed in greater detail in Chapter XII. 

20. Shearing Stresses Resulting from Principal Stresses. 

Proposition.—If normal (principal) stresses, only, occur on three 

planes at right angles to each other at a point in a body, shearing 

Fig. 46.—Shearing stress resulting from principal stresses. 

stresses occur on oblique planes through this point; the maximum 

value of the shearing unit-stress is one-half of the algebraic dif¬ 

ference of the maximum and minimum principal unit-stresses, that 

is, 

Max. Ss = ^(Smax. smln.) 

in which a compressive stress is to be considered a negative tensile 

stress. Further, the maximum shearing unit-stress occurs on each 

of the two planes that bisect (make 45° with) the planes on which 

the maximum and minimum normal stresses occur. 

Proof.—Let the block in Fig. 46(a) represent a small part of 

a body subjected to a tensile principal unit-stress si on the plane 

AB (and CD), a compressive principal stress S2 on the plane BD 

(and AC), and a principal stress of zero magnitude on the faces 

parallel to the plane of the paper (bodies subjected to this state of 
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stress will be considered in Chap. XII.); the maximum principal 

unit-stress is +si and the minimum is — S2. 

Now if an oblique plane is passed through the block and a part 

of the block is removed, the forces holding the remaining part in 

equilibrium are shown in Fig. 46(6). By applying one of the equa¬ 

tions of equilibrium (resolving the forces parallel to the z-axis) 

the following equation is found; 

BC ss = AB si sin <t>-\-AC S2 cos </>. 
Hence 

ss = [si — (— $2)] sin </> cos 0 

= 2(^max.- ^min.) SU1 2 (f>.(21) 

But sin 2 (f> is a maximum (equal to unity) when 4> equals 45°, and 

hence the above proposition is shown to be true. 
It should be noted that if si and S2 are of like sign (both 

tensile or both compressive stresses) and the third principal stress 

is zero, as in the shell of a boiler (Fig. 486), then the minimum 
stress is zero, and hence the maximum shearing unit-stress is 

-|smax. And, if two principal stresses are zero (as in Fig. 41) the 
maximum shearing unit-stress is merely Js where s is the only 

principal stress, which agrees with the value of ss found in Art. 16. 

PROBLEMS 

48. A boiler 6 ft. in diameter is made of plates f in. thick and is subjected 

to an internal steam pressure of 200 lb. per sq. in. Find the maximum shear¬ 

ing unit-stress in the plate. Ans. ss = 4800 lb. per sq. in. 

49. A gun barrel or thick cylinder (Fig. 47) on 

which hoops are shrunk (not shown in Fig. 47) is 

subjected to an internal pressure of 50,000 lb. per 

sq. in. due to the explosion of the charge; the maxi¬ 

mum radial compressive stress, sc, in the material 

is also 50,000 lb. per sq. in. Now if the maximum 

circumferential stress, st, is 16,000 lb. per sq. in. and 

occurs at the same point in the cylinder as does sc, 

find the maximum shearing unit-stress and indicate 

the planes on which it occurs. 

50. At a certain point in a material subjected 

to stress a compressive stress of 2000 lb. per sq. in. exists in a direction 

at right angles to a tensile stress of 2000 lb. per sq. in. Find the normal 

unit-stress and the shearing unit-stress on a plane making 30° with the 

direction of the tensile stress. 

Ans. st = 5320 lb. per sq. in. ss = 14,300 lb. per sq. in. 

Fig. 47.—Stresses in 
thick cylinder. 
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21. Poisson’s Ratio and the Relation between Moduli of 

Elasticity.—If a bar is subjected to an axial tensile load the bar is 

elongated in the direction of the load, that is, in the longitudinal 

direction, and at the same time the lateral dimension of the bar 

decreases. The ratio of the lateral unit-strain to the longitudinal 

unit-strain is called Poisson’s ratio and will be denoted by the 

symbol m. The value 3 for this ratio for steel (and most structural 

metals) is approximately J; values of \ to § are frequently used. 

The shearing modulus of elasticity, Es, of a homogeneous 

material may be expressed in terms of the tensile (or compressive) 

modulus of elasticity, E, and Poisson’s ratio, m, by the following 

equation.4 

F l 
‘ 2(1+m) 

(22) 

And since both Es and E may be obtained from experimental data 

(see Art. 5, 144 and 145), this equation offers a convenient means 

of determining Poisson’s ratio. 

If the value of m for steel is taken to be J then the above expres¬ 

sion (for steel) becomes ES=%E. (Compare the ratio of the 

moduli of elasticity as given by this equation with the experimental 

values in Table 1). 

22. Strains due to Principal Stresses.—If a rectangular block 

Fig. 48.—Strain due to two principal stresses. 

of material is subjected to normal stresses, only (that is, to principal 

stresses), on two pairs of faces (Fig. 48a)—tensile unit-stresses si 

3 See “Determination of Poisson’s Ratio” by T. M. Jasper, in Proceedings 

of Am. Soc. for Testing Materials, 1924. 

4 The derivation of this equation is beyond the scope of this book; it may 

be found in treatises on the theory of elasticity. 
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on one pair and compressive unit-stresses S2 on the other pair— 

the unit-elongation in the direction of si caused by Si is 

si 

ei = E’ 

and the unit-strain, e2, in the direction of S2 caused by S2 is 

S2 

€2=E> 

and the unit-strain e\ in the direction of si caused by 82 is 

, S2 
ei =me2 = m_ 

in which the modulus of elasticity, E, is assumed to be the same in 

compression as in tension. Therefore, the total unit-strain in the 

direction of si is 
Sl . S2 

t=E+mE’ 
or 

Ee = S\-\-ms2 (23) 

And if both stresses are tensile stresses as occurs in the shell of a 

boiler (Fig. 486), and in other structures, the equation becomes 

Ee = si~ms2 (24) 

It is important to note that unit-stress is proportional to unit- 

strain only when the material is subjected to one principal 

stress. Or, to put the same idea in other words, the normal 

unit-stress in a material is equal to the modulus of elasticity times 

the unit-strain in the direction of the stress (s = Ee) only when 

the material is subjected to a normal stress in one direction. 

The use and significance of the term Ee is discussed in Art. 112 

and 113. 

23. Resilience.—Resilience is the property of a material that 

enables it to give up energy (do work) when the stress in it is 

released. The amount of energy released or recovered per unit- 

volume of the material when the intensity of stress decreases from 

the proportional limit to zero is called the modulus of resilience. 

Now the energy recovered when the stress is released from the 
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proportional limit may be assumed to be equal to the work done on 
the material in stressing it to the proportional limit; that is, 
within the proportional limit, the energy lost in stressing the ma¬ 
terial may be assumed to be negligible.5 The 
property of resilience is of special importance 
in connection with impact and energy loads 
and is discussed further in Chapter XIII and 
also in Art. 146. 

One Normal Stress.—Let a unit-volume 
(cube) of material be subjected to a normal 
unit-stress s in one direction only, as indicated 
in Fig. 49. If the stress increases gradually 
from zero value and causes the cube to elongate Fig. 49—Block sub- 

,i , , . jectedto oneprin- 
an amount e, the work done, w, is cipal stress. 

w = ise, .... (25) 

and since within the proportional limit e = ^, the work done per 
£j 

unit-volume in stressing the material to any value s less than the 
proportional limit is 

Is2 

2 E’ . 
w (26) 

and hence the tensile (or compressive) modulus of resilience, k, is 

(27) 

Fig. 50.—Block subjected to pure shear. 

in which se is the propor¬ 
tional limit of the material. 

Pure Shear.—Let a unit- 
volume of a material be sub¬ 
jected to pure shear as indi¬ 
cated in Fig. 50(a) or as 
indicated more conveniently 
in Fig. 50(5). The work 
done in gradually increasing 
the stress from zero to the 

value ss as the shearing strain increases to e, is 

5 If the stress is repeated a great many times the total energy lost may not 
be negligible although the loss of energy in any one cycle of stress may be 
negligible. 
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£ 

and if ss does not exceed the shearing proportional limit e5 = -gr, 

and hence the shearing modulus of resilience, ks, is 

1 (ss)*2 
2 Es , 

(29) 

in which (ss)e is the shearing proportional limit. 

Combined Shearing and Normal Stresses.—If a cube of material 

is stressed as indicated in Fig. 51 the work done per unit-volume is 

_ 1 s2 1 s52 

w 2E+2E; 
(30) 

This combination of stresses will be discussed in Chapter XII, 

and the above expression is used in Art. 113. 

Fig. 51.—Block subjected to 
tension and shear. 

Fig. 52.—Block subjected 
to two principal stresses. 

Two Principal Stresses.—If a unit-volume of material is sub¬ 

jected to normal stresses, only, on two faces (that is, to two princi¬ 

pal stresses) as shown in Fig. 52, the work done may be found as 

follows: If Si were acting alone the work done would be Jsiei, 

where ei is the deformation due to si. Now if S2 be applied it 

does an amount of work equal to \s2e2, where €2 is the strain in 

the direction of S2 due to S2. But the strain e2 causes a strain 

equal to me2 in the direction opposite that of si, and hence si does 

an additional amount of work equal to — Si-me2. Therefore the 

total work done is 

w = i siei + i s2e2-s1me2 

_ 1 si2 1 S22 S1S2 

~2 E+ 2 ~E m~W’ 
(31) 

in which a tensile stress is to be taken as positive and a compressive 

strength as negative. 
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PROBLEMS 

51. Calculate the tensile modulus of resilience of structural steel using the 

values in Table 1. Ans. /s = 20.4 in.-lb. per cu. in. 

52. If the amount of energy that can be stored in a material before inelastic 

action begins is a constant regardless of the way the material is stressed, show 

that the shearing proportional limit of steel Is 0.63 times the tensile propor¬ 

tional limit, assuming ES — ^E. 



CHAPTER IV 

STRESS AND DEFORMATION DUE TO TORSIONAL 

LOADS 

24. Torsional Load, Twisting Moment and Resisting Moment 

Defined. Torsional Load.—Forces that cause a bar to twist 

about its central axis are called torsional loads. The resultant of 

torsional loads acting on a shaft is a twisting couple (two equal, 

opposite, non-coil inear forces) since simple turning or twisting can 

be produced only by a couple. The resultant moment (or moment 

of the resultant couple) which causes the twisting is the algebraic 

sum of the moments of the torsional loads about the axis of the 

bar or shaft. 

Twisting Moment.—The twisting moment for a section of a 

shaft is the name given to the algebraic sum of the moments, 

about the axis of the shaft, of the torsional loads that lie to one 

side of the section. The symbol T will be used to denote the twist¬ 

ing moment. 

It is here assumed that the torsional loads lie in planes perpen¬ 

dicular to the axis of the shaft. If the forces do not lie in such 

planes the forces may be resolved into components perpendicular 

and parallel, respectively, to the axis, the components parallel to 

the axis being neglected in the following discussion. 

Resisting Moment.—In Fig. 53(6) is shown a shaft subjected to 

a twisting moment T (equal to Pp) at one end of the shaft. Now 

since the shaft is in equilibrium the body A must exert an equal 

and opposite moment (not shown) on the other end of the shaft 

and these two moments cause the shaft to twist. 

The shaft when thus twisted has shearing stresses developed on 

each normal section of the shaft and the moment of these shearing 

stresses on any section, called the resisting moment, holds the 

twisting moment in equilibrium. For example, let a plane, BC, 

be passed through the shaft and let the portion of the shaft to the 

right of the plane be removed. Now if the remaining (left) por- 

60 
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tion of the shaft (Fig. 52a) is held in equilibrium (as it was when 

in the whole shaft) a moment equal and opposite to T must be 

applied to it. This resisting moment (denoted by Tr, Fig. 526) is 

exerted on the left portion by the right portion on the section DE 

cut by the plane, and is due to the shearing stresses developed on 

the section. Thus, the shearing resisting moment at a section of a 

shaft is the sum of the moments, about the center of the shaft, of 

the shearing stresses that are developed on the section in order to 

Fig. 53.—Cylindrical bar subjected to a twisting moment. 

hold the twisting moment for this section in equilibrium. Thus 

from the condition of equilibrium, we have, 

Moment of External forces = Moment of internal forces or stresses, 

that is, 

Twisting moment = Resisting moment 

or 

T= Tr. 

25. Distribution of Stress on the Cross-section.—Now before 

an expression for the sum of the moments of the stresses on the 

area (resisting moment) can be found, the way in which the stress 

is distributed over the area must be determined. It is assumed 

that the intensity of shearing stress (shearing unit-stress) is zero 

at the center of the section and increases directly as the distance 

from the central axis. 

In order to supply the evidence or reasoning leading to this 

assumption it is necessary to consider: 

(a) the manner in which the shearing strains of the fibers in 

the shaft vary when the shaft is twisted. 
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(6) the relation between the shearing strain of a material and 

the accompanying shearing stress in the material. 

Information concerning these points is obtained mainly from 

the results of experiments: 

(a) Experiments have shown that when a cylindrical1 shaft is 

twisted, a plane section of the shaft before twisting is approximately 

a plane section after twisting, and it is assumed that a diameter 

in the section before twisting is a diameter (straight line) after 

twisting.2 If this is true, 

The shearing unit-strain of the material at any point 

in the shaft is proportional to the distance of the point from 

the central axis. 

Proof.—Fig. 54(a) represents a cylindrical shaft twisted by the 

twisting moment T or Pp. An outer element or fiber A B, having 

Fig. 54.—Shearing strain in shaft due to twisting moment. 

a cross-sectional area da, takes the form of a helix A B' when the 

shaft is twisted. Now a small portion of the fiber, which is at C 

before the shaft is twisted is at C' after the shaft has been twisted 

1A plane section of a shaft whose cross-section is not circular does not 

remain plane when the shaft is twisted. Torsion of shafts having non-circular 

sections is discussed very briefly in Art. 31. 

2 Although this assumption seems a reasonable one, it is very difficult to 

obtain direct experimental verification. The justification for the assumption 

is to be found in the agreement of results calculated from the formula based 

on this assumption and experimental results. 
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and is deformed as shown in the figure by the shearing stresses on 

its faces. 

Further, as discussed in Art. 4, the shearing unit-strain, e3, at 

any point of a body is equal to the tangent of the angle of deviation 

from a right angle of two planes passing through the point. 

Therefore, the shearing unit-strain, e8, at the surface of a cylindrical 

shaft when twisted is 

€ s = tan 0. 

But tan 0 (Fig. 54a) is equal to the arc BB' divided by the length, 

l, of the shaft, and further, BB' is equal to the radius c times the 

angle of twist, 6, expressed in radians. Therefore, 

. - BB' cd 
es, at surface, = tan 0 = ~-j— = -j. 

Similarly, the shearing unit-strain at a point at the distance p 

from the center of the shaft (Fig. 545) is 

. ,. . DD' P9 
€s} at distance p, = — 

Now since a radius OB before the shaft is twisted is a straight 

line, OB', after twisting, and since the lengths, l, of all fibers are 

equal, it follows that 

cd 

es at distance c from center _ l _c 

es at distance p from center pd p 

J 

That is, when a shaft is twisted the shearing unit-strains of the 

fibers vary directly as the distances of the fibers from the central 

axis of the shaft. 

(5) As stated in Art. 5. when a material is stressed (whether in 

tension, compression or shear), experiments have shown that for 

nearly all structural materials the unit-stress at any point in the 

material is proportional to the corresponding unit-strain at that 

point provided that the unit-stress does not exceed the propor¬ 

tional limit of the material. Hence if (ss)c and (es)c denote the 

shearing unit-stress and unit-strain, respectively, of fibers at the 
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distances c from the axis, and the subscript p is used in a similar 

way, then 

= 7^4°- = etc. = a constant. 
Me (Op 

The numerical value of this constant ratio is called the shearing 

modulus of elasticity of the material and is denoted by Es 

(Art. 5). 

Distribution of Stress over Area.—The way in which the shear¬ 

ing unit-stress varies over the area may now be stated. For, since 

the shearing unit-strains of the fibers are proportional to the 

distances of the fibers from the center of the shaft, and since the 

shearing unit-strains of the fibers are also proportional to the 

shearing unit-stresses on the fibers it follows that: 

The shearing unit-stress on a fiber of the shaft varies 

directly as the distance of the fiber from the axis of shaft 

(as shown in Fig. 55). Or, expressed mathematically, 

Os)c 0 . (^s)c ('S$)p j , , /or»\ 
7—r— = ~ or-= -—- = etc. = a constant . . (32) 
(Ss)P P C p 

26. Expression for Resisting 

Fig. 55.—Shearing stresses in cylindrical 
shaft. 

Moment. The Torsion 
Formula.—The sum of the 

moments of the shearing 

stresses (resisting moment) 

may now be found as follows: 

The unit-stress at the 

distance p from the axis 

(Fig. 55) is MP and the 

unit-stress may be assumed 

to be constant over the ele¬ 

ment of area da. Hence, 

Total shearing stress on 

area da = (sa)p da 

Moment of total stress on 

area da= (s8)pda‘ p 

Sum of moments of stresses^on all elements of area, about axis 

of shaft -Tr-flft, dap 
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This may be written 

’,= f^dap2, 
J P 

(s) . (s )c 
but, as shown above,is constant and equal to ■^-2, and hence 

the above expression may be written 

(«.). Tr J-^jdap2. 

Now fdap2 is the polar moment of inertia of the area with respect 

to the central axis of the shaft. It will be denoted by the symbol 
7rd4 

J, and is equal to (see Art. 162, Appendix II). Hence, 

1 '*H SJ 
Resisting moment = Tr=—, 

in which the subscript on s8 is omitted since it will be understood 

that ss is the shearing unit-stress on the fiber at the distance c 

from the center, where c may be any value from 0 to the radius 

of the shaft, but since the maximum value of sa is vusually wanted 

the value of c will usually be the radius of the shaft. 

The Torsion Formula.—As already shown in Art. 24, the 

resisting moment holds the external or twisting moment in equi¬ 

librium and is therefore numerically equal to the twisting moment. 

Thus 

T=Tr 
and hence 

s J Tc 
T = ^f or ss=±j,.(33) 

which is called the torsion formula. 

If s5 is expressed in pounds per square inch T must be expressed 
7rd4 

in pound-inches, c in inches and J (equal to Art. 165) in 

inches to the fourth power (in.4). 

Limitations of the Torsion Formula.—The torsion formula is not 

applicable unless the following conditions are satisfied: 

1. The shaft is a circular cylinder, either solid or hollow. 

2. The loads lie in a plane or planes perpendicular to the axi& 

of the shaft. 
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3. The shearing unit-stress does not exceed the shearing 
proportional limit of the material. 

ILLUSTRATIVE PROBLEM 

Problem 53. A shaft (Fig. 56) having a diameter, d, of 1.5 in. rotates at 

constant speed. It has keyed to it a driving pulley A and two driven pulleys 

B and C. The effective pull for each belt (difference between tensions on the 

two sides of a pulley) is 40 lb. per in. of width of belt. The belt on pulley A 

is 6 in. wide, and on B 4 in. wide. Pulley A has a diameter of 36 in., B of 12 

in., and C of 18 in. Find the maximum shearing unit-stress in the shaft 

between A and B; also between B and C. 

Solution.—The twisting moment for any section between A and B is 

77i = 40X6X18 = 4320 lb.-in. 

The maximum shearing unit-stress, $/, in any section between A and B is 

Td 

, TiC U2 16 

Ss J~TrdA~T\d* 

32 

= 4320X~ =6520 lb. per sq. in. 
7r(1.5)3 

Similarly, the maximum shearing unit-stress, ss", at any section between 
B and C is 

TvC c 
Ss"=~j~ ~ (Ti—4X40X6) X 

= 3360 X—= 5070 lb. per sq. in. 



STRESS DUE TO TORSIONAL LOADS 67 

PROBLEMS 

54. If a twisting moment of 10,000 lb.-ft. is applied to a cylindrical shaft 

4 in. in diameter what shearing unit-stress will be developed in the outer fibers 

of the shaft? Ans. ss = 9550 lb. per sq. in. 

55. The shearing yield-point of a certain steel shaft is 30,000 lb. per. sq. in. 

and a working stress equal to one-third of the yield-point is specified. What 

should be the diameter of the shaft if the shaft is subjected to a twisting 

moment of 1200 lb.-in.? Ans. d = 0.85 in. 

56. A workman sometimes breaks a bolt in tightening the nut. If the 

workman uses a wrench with a handle which gives him a moment arm of 

15 in. and he exerts a force of 75 lb. on the handle, what should be the minimum 

diameter of a steel bolt to prevent the proportional limit of the bolt from being 

exceeded? Neglect friction. 

57. A plate A (Fig. 57) is riveted to a fixed member B by means of four 

f-in. rivets as shown in the figure. Find the shearing unit-stress at the 

center of each of the rivet areas due to the 2000-lb. loads. Is the torison for¬ 

mula applicable to this problem ? Note that the shearing area may be 

assumed to be two concentric annular areas, equivalent to the cross-sections 

of two_concentric hollow thin-walled cylinders. 

Fig. 57.—Rivets subjected to Fig. 58.—Friction clutch 
torsional shear. transmits twisting moment 

from one shaft to another. 

58. The stern end of a marine propeller-shaft has a diameter of 11 in. 

and a maximum shearing stress of 8000 lb. per sq. in. To this is connected 

a hollow steel tail shaft in which the maximum shearing stress is 10,000 lb. 

per sq. in. The internal diameter is one-half of the external diameter. Find 

the diameters. Ans. ch = 5.21 in., d2 = 10.4 in. 

59. A force P of 196 lb. (Fig. 58) will cause a normal pressure of 15 lb. per 

sq. in. on the rubbing surfaces of the friction clutch shown. If the coefficient 
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of friction is 0.25 and the diameter of the shaft is 2 in., find the maximum 

shearing unit-stress in the shaft. 

60. In the band brake shown in Fig. 59 the force P is 100 lb., the angle of 

contact, a, is 270°, and the coefficient of friction n, is 0.2. Therefore, the 

Fig. 59.—Band brake transmits twisting moment to shaft. 

tension in the band at C is Tc = 1300 lb. and, if the maximum friction is being 

developed, the tension in the band at B is Tb^TaXc^ =3330 lb. (a) If 

the diameter of the shaft is 3 in. what is the maximum shearing unit-stress in 

the shaft? Ans. ss = 3830 lb. per sq. in. 

5 •18- 

H-36-->J 

Fig. 60.—Twisting moment ex- Fig. 61.—Screw of press subjected to 
erted on shaft by means of torsion due to pull on handle, 
friction drive. 

61. Compare the strengths of the following shafts when stressed to their 

limits of proportionality. The first is solid 21 in. in diameter and the shearing 

proportional limit is 25,000 lb. per sq. in.; the second is hollow, having an 
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outside diameter of 18 in. and an inside diameter of 9 in., and a proportional 
limit of 45,000 lb. per sq. in. 

62. A crown friction drive as shown in Fig. 60 is used on screw-power 
presses, motor trucks, etc. The cast-iron disk B rotates at 1000 r.p.m. and 
drives the crown wheel C, which in turn drives the chain sprocket E. The disk 
C is faced with leather-fiber for which the coefficient of friction is 0.35. If 
the diameter of the disk C is 20 in. and the normal pressure of B against C is 
343 lb. what should be the diameter of the shaft between C and E in order to 
prevent the shearing unit-stress due to the twisting moment from exceeding 
8000 lb. per sq. in. (The working stress is taken low because the load is not 
a steady or static load.) Ans. d = 0.915 in. 

63. The shaft-straightening hand press shown in Fig. 61 is used for bending 
or straightening steel shafts requiring a pressure, Q, of about 24,000 lb. The 
operating screw has a root diameter of 2 in. and there are four square threads 
per inch. If the coefficient of friction is 0.2, a force of 161 lb. applied on the 
handle at A will cause the required force Q on the shaft. Calculate the maxi¬ 
mum shearing unit-stress in the shaft. 

27. Twisting Moment in Terms of Horsepower and Speed.— 

Frequently the forces acting on the shaft are unknown, and the 

twisting moment must be found from the 

horsepower transmitted by the shaft and the 

speed (angular velocity) of the shaft. This 

may be done as follows: Let a pulley A (Fig. 

62) be keyed to a shaft B and transmit a 

twisting moment T (equal to Pp) to the shaft 

when rotating at a constant angular velocity 

of co radians per second or n revolutions per 

minute. The work done by the twisting 

couple T, in any angular displacement is the product of the 

moment of the couple and the angular displacement (in radians). 

Hence, _j j 

Work done on shaft per second = Tco 

rr2irn . el'wn .. 
= T-^7t, since co = -7T7t radians. 

60 60 

If the twisting moment T is expressed in inch-pounds the work 

done will also be expressed in inch-pounds. Now the rate of doing 

work at 550 ft.-lb. per sec. or 550X12 in.-lb. per sec. is defined 

to be a horsepower, and hence the number of horsepowers (h.p.) 

transmitted by the shaft is 

fb ) — T27rn 
60x550X12 
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in which T is expressed in lb.-in. and n in r.p.m. Hence 

y_60X550X12X(h.p.) 

2im 

which expresses the relation between twisting moment, horse¬ 

power, and speed. 

PROBLEMS 

64. The hydraulic turbines in the Keokuk water-power plant are rated at 
10,000 h.p., with an overload capacity of 13,500 h.p. The vertical shaft con¬ 
necting the turbine and the generator is 25 in. in diameter and rotates at 
57.7 r.p.m. What is the maximum shearing unit-stress developed in the shaft 
when developing full load and when developing maximum overload? 

65. A pulley 10 ft. in diameter is mounted on a 2^-in. shaft and rotates at 
150 r.p.m. transmitting power to a belt. If the belt tensions are 1800 lb. and 
1400 lb. (a) what horse-power is transmitted ? (6) What is the maximum 
fiber stress in the shaft ? Ans. (a) (h.p.) =114, (b) ss = 5220 lb. per sq. in. 

J 66. A hollow shaft is used to transmit 6000 h.p. The outside diameter 
is 18 in., the speed is 90 r.p.m., and the maximum shearing unit-stress devel¬ 
oped in the shaft is 12,000 lb. per sq. in. Find the inside diameter of the shaft. 

Ans. di = 16.5 in. 

67. What horsepower can a solid steel shaft 6 in. in diameter transmit when 
rotating at 120 r.p.m. and developing a shearing unit-stress of 10,000 lb. per 
sq. in. in the outer fiber? 

28. Angle of Twist of Cylindrical Shaft.—In some problems 

the size of shaft required to transmit a given twisting moment (or 

given horsepower at a given speed) is controlled by the allowable 

angle of twist rather than the allowable shearing unit-stress. In 

other words, stiffness rather than strength is the controlling factor 

in the design. The angle of twist, 0, (Fig. 54) caused by a given 

twisting moment T may be found as'follows: 

As explained in Art. 5, 

— = a constant = E, 

provided that ss does not exceed the shearing proportional limit of 

the material. But as shown in Arts. 25 and 26 

Tc 
Ss = -r 

J 
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Therefore, 
Tc 

F =L = T1 
hs Cd Jd 

l 

Hence, the angle of twist, 6, when not greater than that corre¬ 

sponding to the proportional limit of the material is, 

Tl 

e=EJ’.(35) 

in which 6 is expressed in radians, any consistent units of force 

and length being used to express the other quantities. Thus, T 
is usualfy expressed in inch-pounds, l in inches, Es in pounds per 

square inch, and J in inches.4 

PROBLEMS 

68. A steel shaft 4 in. in diameter transmits 200 h.p. at a speed of 250 
r.p.m. The distance between the driving and driven pulleys is 10 ft. De¬ 
termine whether the following two requirements are satisfied: 

(а) Maximum shearing unit-stress not to exceed 10,000 lb. per sq. in. 
(б) Twist of shaft not to exceed 1 degree per 20 diameters of length. 

Ans. ss = 4020 lb. per sq. in. 0 = 0.77° per 20 diam. 

69. A wrought-iron shaft 7.5 ft. long and 2 in. in diameter twists through 

an angle of 10.5 degrees when resisting a twisting moment of 2500 lb.-ft. 
The shearing proportional limit of the material is 24,000 lb. per sq. in. Find 
the value of the shearing modulus of elasticity. 

Ans. Es = 9,360,000 lb. per sq. in. 

70. A hollow bronze shaft having an outside diameter of 6 in. and an 

inside diameter of 4 in. is 12 ft. long. If the shaft is twisted by applying 
moments at its ends, what will be the angle of twist when the maximum shear¬ 

ing unit-stress is 8000 lb. per sq. in. (Es = 6,000,000 lb. per sq. in.) 

71. The steel shaft connecting a hydraulic turbine with an electric generator 

was so long that it twisted enough to cause electrical trouble in the generator. 

If the shaft had been replaced by one with the same diameter but made of 
steel having a greater shearing strength would the amount of twist have been 

decreased? 

29. Shaft Couplings.—Two shafts frequently are connected by 

means of a bolted coupling (Fig. 63a) so that, as the twisting 

moment is transmitted from one shaft to the other, shearing stresses 

are developed in the bolts. For example, let the shaft A (Fig. 63a) 
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exert a twisting moment on the shaft B just sufficient to overcome 

the resistance to motion of shaft B, the resisting moment exerted 

by B being equal to the moment of the shearing stresses in the 

bolts as indicated in Fig. 636. 

(a) (6) 

Fig. 63.—Shear in bolts of coupling. 

Now if the diameter, d, of the bolts is small in comparison with 

the distance, r, from the center of the bolts to the center of the 

shaft, the shearing unit-stress, s„ over the cross-section area, a, 

of each bolt may be assumed to be constant. Hence the resisting 

moment, Tr, is 
Tr=m(ass-r) 

ird2 
= m—ss • r, 

in which m is the number of bolts, all of which are on a circle of 

radius r. And since this resisting moment is equal and opposite 

to the twisting moment T, then 

T=m7~ss^r.(36) 

If T is expressed in inch-pounds, d'and r must be expressed in 

inches, and in pounds per square inch. But from Art. 27 

^ _ 60 X550 X12 X (h.p.) . „ 
-t---~-m.-lb. 

27rn 
Therefore, 

60 X 550 X12 X (h.p.) xd2 
-2^--=m—s,-r . . . (37) 

from which any one of the quantities may be found if all the others 

are known. 
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The resisting moment, Tr, could have been obtained from the 

expression ~~ in which 

J = m(J+ar2), see Art. 164 

but J = xd,4 and since d is small in comparison with r then d2 

is negligible in comparison with r2. Hence the resisting moment 
is 

Tr 
ssmar2 ird2 

■-= m—r-rs& 
r 4 

which is the same expression as found by the method used above. 

PROBLEMS 

72. A solid shaft 4 in. in diameter is to be connected to another shaft of 
the same size by means of a coupling as shown in Fig. 63a. If six f-in. bolts 
are used on a circle having a diameter of 10 in., what (h.p.) can the shaft trans¬ 
mit when rotating at 150 r.p.m. and when the shearing unit-stress in the bolts 
is 10,000 lb. per sq. in. What will be the maximum shearing unit-stress in 
the shaft? 

73. A coupling is to be used to connect two shafts having diameters of 
4 in. The maximum allowable shearing unit-stress in the shafts is 10,000 lb. 
per sq. in., the diameter of the bolt circle is 8 in. and the allowable shearing 
unit-stress in the bolts is 9000 lb. per sq. in. Find the number of f-in. bolts 
necessary. Ans. Eight. 

30. Stress Beyond Proportional Limit. Modulus of Rup¬ 

ture.—As shown in Art. 26 the value of ss in the torsion formula, 

of the shaft only when the proportional limit of the material is not 

exceeded. If the twisting moment, T, causes a unit-stress greater 

than the shearing proportional limit of the material the internal or 

resisting moment is still equal to (holes in equilibrum) the external 

or twisting moment, but the resisting moment is not given by the 

s J 
expression since this expression is found by assuming that the 

c 

shearing unit-stress varies directly as the distance from the center 

of the shaft which is true only when the stress does not exceed the 

proportional limit of the material. 

This fact is illustrated in Fig. 64. A diameter before twisting 

is assumed to be a diameter (straight line) after twisting even 
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though the material is stressed beyond the proportional limit, and 
hence the unit-strain in each of the two shafts (Fig. 64), varies 
directly as the distance from the center of the shaft. But in the 
shaft that is stressed beyond the proportional limit (Fig. 646) the 
unit-stress is not proportional to the unit-strain except near the 
center of the shaft where the strain is small, and hence the unit- 
stress does not vary directly as the distance from the center of 
the shaft except for a short distance out from the center. If the 
material of the shaft is ductile enough to have a yield-point the 
unit-stress will vary about as shown in Fig. 64(6) when the yield- 

point of the shaft is reached. 

Fig. 64.—Distribution of shearing stress in shaft when stressed 
above proportional limit. 

Modulus of Rupture.—Now the moment of the stresses in Fig. 
64(6) is larger, for a given unit-stress at the surface of the shaft, 
than it would be if the unit-stress varied directly from zero at the 
center to this given value at the surface as indicated by the dotted 
line. Therefore, if the shearing ultimate strength 3 of the material 

found for T would be smaller than the maximum twisting moment 
that can be applied to the shaft. Tests show that the maximum 
twisting moment that can be applied to cylindrical steel bars is from 
10 to 20 per cent greater than that calculated from the torsion 
formula by substituting the shearing ultimate strength for ss. 

The value of sa found from the torsion formula by substituting 

8 The shearing yield-point of a ductile material is regarded as its useable 

shearing ultimate strength. 
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for T the value of the maximum twisting moment that a shaft 

resists when tested to rupture is called the shearing modulus of 

rupture and will be denoted by sr. Thus 

„ _ Tmax. C 

Sr~ J * 

It should be noted that sr is not the unit-stress in the material 

caused by the moment Tmax., and, as already noted, it is not equal 

to the shearing ultimate strength 4 of the material; it is merely a 

value (expressed in lb. per sq. in.) from which the maximum twist¬ 

ing moment that a cylindrical shaft can resist, may be found. 
31. Torsion of Non-circular Sections.—As stated in Art. 26 

Ssj 
the torsion formula, T=—, applies only to a shaft having a cir- 

c 

Fig. 65.—Stress in shafts having non-circular sections. 

cular cross-section, in which case a plane section of the shaft before 

twisting is a plane section after twisting and the shearing unit- 

stress varies directly as the distance from the center, the unit- 

stress being maximum at the outer fiber. 

If a bar has an elliptical, rectangular, or other non-circular 

cross-section, a plane section before twisting becomes a warped 

surface after twisting, and, if the section is free from re-entrant 

angles, the maximum unit-stress occurs on the surface fiber nearest 

to the center of the shaft instead of the fiber most remote from the 

center. The distributions of stress on the cross-sectional areas of 

elliptical and rectangular bars are shown in Fig. 65. 

The derivation of the equations giving the maximum shearing 

unit-stress and angle of twist for bars that have non-circular cross- 

sections is beyond this scope of this book. 

4 For a method of finding the shearing ultimate strength of a material from 
a torsion test of a solid cylindrical specimen see Upton’s Materials of Construe- 
tion_(John Wiley & Sons), p. 52. 
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Torsion of Members Other than Shafts.—Frequently structural 
members such as I-beams, flat plates, columns, etc., in buildings, 
ships, locomotives, cranes, etc., are subjected to twisting actions, 
and although the twisting in such members is, in general, considered 
to produce secondary effects, the twisting may have a marked in¬ 
fluence on the stiffness and strength of the member, particularly 
since members that are designed to resist bending have, in general, 
relatively small resistance to torsion; torsional action in structural 
members should therefore be reduced to a minimum, or allowance 
should be made for the effects of the torsion. 



CHAPTER V 

TRANSVERSE LOADS. STRESSES IN STATICALLY 
DETERMINATE BEAMS 

32. Preliminary Considerations.—A beam is a bar that is bent 
by forces acting perpendicular to the axis of the bar.1 Forces that 
act on a beam are called transverse or cross-bending loads. It will 
be assumed that the cross-bending loads acting on a beam lie in 
one plane containing the central longitudinal axis of the beam and 
that this plane is a plane of symmetry of the beam. 

Beams are important members in many engineering structures 
and machines. Several common types of beams are described as 
follows: 

A simple beam is one that rests on two supports at the ends of 
the beam. Fig. 66 shows a horizontal simple beam subjected to 
two equal concentrated loads at the third-points. 

P P 

Fig. 66.—Simple beam. Fig. 67.—Fixed beam. 

Affixed or fixed-ended beam is one so restrained at its ends that 
the slope of the curve of the beam at the restrained ends does not 
change when the load is applied. Fig. 67 shows a beam fixed at 
both ends, and subjected to a uniformly distributed load of w 

pounds per foot; Fig. 68 shows a beam fixed at one end and sup¬ 
ported at the other, and subjected to a concentrated load at mid¬ 
span. The end connections of beams in structures and machines 

1 If the beam acts as it is assumed to act, in this and the following chapters, 
its length must be at least several times its depth. Further, the thickness or 
width of the beam must be sufficient to prevent collapse by wrinkling; thus, 
extremely deep and extremely thin beams are excluded. 

77 



78 TRANSVERSE LOADS 

frequently offer considerable restraint, but not enough that the 
beams may be considered “ fixed” ; such beams are then inter¬ 
mediate between simple beams and fixed beams. 

P 

Fig. 68.—Beam fixed at one end, Fig. 69.—Cantilever beam, 
supported at other end. 

A cantilever beam is one that is fixed at one end and free at the 
other. Fig. 69 shows a cantilever beam subjected to a uniformly 
distributed load over its entire length, and to a concentrated load 
at its end. 

Fig. 70 shows an overhanging beam that overhangs both sup¬ 
ports and that carries concentrated loads at the ends of the beam 
and a uniformly distributed load over the span between supports. 

Fig. 70.—Overhanging beam. Fig. 71.—Continuous beam. 

A continuous beam is one that rests on more than two supports. 
Fig. 71 shows a continuous beam with three equal spans carrying 
a uniformly distributed load of w\ pounds per foot over two spans 
and a uniformly distributed load of wo pounds per foot over the 
third span. 

Pure bending is bending caused by couples. Thus the mid- 
third of the beam in Fig. 66 is subjected to pure bending. Bending 
produced by forces that do not form couples is called ordinary 

bending. As will be shown later, a beam subjected to pure bend¬ 
ing has no shearing stresses developed in it; the stresses on any 
section are normal (tensile or compressive) stresses whereas in 
ordinary bending the loads develop shearing stresses as well as 
normal stresses. 

Reactions.—For convenience the forces exerted on a beam by 
the supports are called reactions and the other forces are called 
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loads, but both loads and reactions are merely external forces that 
act on the beam and hold the beam in equilibrium. 

If the loads are known, the reactions can be found by use of the 
equations of equilibrium provided that there are not more than two 

reactions. For, the forces that hold the beam in equilibrium con¬ 
stitute a parallel force system in a plane, and for such a force 
system there are only two independent equations of equilibrium; 
namely, 

2F = 0 2Ma = 0 
or 

XM = 0 ZMb = 0 

which state that the algebraic sum of the forces and the algebraic 
sum of the moments of the forces about any point are equal to zero. 
Or, the algebraic sum of the moments of the forces about each of 
two points A or B, not in a line parallel to the forces, are equal to 
zero. 

Statically Determinate and Statically Indeterminate Beams.— 
Beams for which the reactions can be found from the equations of 
equilibrium are called statically determinate beams, and those for 
which the number of unknown reactions is greater than the 
number of equilibrium equations are called statically indeterminate 

beams. Simple and cantilever beams, and overhanging beams 
that rest on two supports, are statically determinate beams, whereas, 
fixed-ended beams and continuous beams are statically indetermin¬ 

ate, and hence require equations in addition to the equilibrium 
equations in order to determine the reactions. 

This chapter deals mainly with the problem of determining the 
relation between the external forces acting on statically determinate 
beams and the stresses which the forces develop in the beams. 
Statically indeterminate beams are discussed in Chapters VII and 
IX. 

PROBLEMS 

74. Find the reactions of the supports for the beam shown in Fig. 72; 

neglect the weight of the beam. 

20C0 lb. 1000 lb. 

500 lb. per ft. 400 lb. per ft. 

'IIIIIIIIIIIIIIIIII111U, 11111111! 1! 1111 LLLb 
-7S- 

'II1111111111 

k-4^4 12- |<—4-—>|<-6' ^<—3- 

Fig. 72. Fig. 73. 
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75. Find the reactions of the supports for the beam shown in Fig. 73; 
neglect the weight of the beam. Ans. 7^ = 4267 lb. 722 = 5133 1b. 

33. Vertical Shear, Resisting Shear, Bending Moment, and 
Resisting Moment.—In Fig. 74(a) is shown a simple beam sub¬ 
jected to two concentrated loads, the weight of the beam being 
negligible. The reactions Ri and R2 are found to be 6500 lb. and 
3500 lb., respectively. Let it be required to determine the 
character of the internal forces (stresses) that must occur on any 
section of the beam, such as section A A. If the portion of the 
beam to the right of section A A is removed, forces equivalent to 
those that the right portion exerted on the left portion must be 
applied on section A A in order to hold the left portion in equili¬ 
brium, since it was in equilibrium before the right portion was 

O) 
Fig. 74.—Stresses at any section hold external forces in equilibrium. 

removed. The problem, therefore, is to determine the forces 
(stresses) that must act on section A A in order to hold the forces 
Ri and P\ in equilibrium. 

Now, it is only the unbalanced part, or resultant, of the external 
forces that must be held in equilibrium by the stresses on the sec¬ 
tion of the beam, and hence, it is convenient to have a name for 
the resultant, or stress-producing part, of the loads. Thus, 

The vertical shear for a section of a beam is the magnitude 
of the resultant of the forces (loads and reactions) that lie 
on one side of the section. Or, in other words, it is the 
algebraic sum of the forces that lie on one side of the section. 

¥ 

The symbol V will be used to denote vertical shear and, for 
convenience, the forces that lie to the left of the section will, as a 
rule, be used. 

The total shearing stress on a section of the beam is called the 
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resisting shear at the section and will be denoted by the symbol 
Vr. And since, from the condition of equilibrium, the algebraic 

sum of all the forces acting on the left (or right) portion of the beam 

must equal zero we have, 

Vertical shear = Resisting shear 

or, 

V= Vr. 

For the beam shown in Fig. 74a the vertical shear V for section 

A A is a downward force equal to 8000 lb.—6500 lb. or 1500 lb., 

and hence the resisting shear, Vr, on section A A (Fig. 746) is an 

upward stress of 1500 lb. 

Bending Moment and Resisting Moment.—The left portion of 

the beam (Fig. 746), however, will not be in equilibrium unless the 

algebraic sum of the moments of the forces acting on it are also 

equal to zero. Now the moment of Pi about a line in the section 

A A is greater than the moment of Pi, and hence this unbalanced 

moment of the external forces must be resisted by a moment 

exerted by the forces acting on the section A A. These forces on 

the section A A are the normal stresses exerted by the right portion 

of the beam on the left portion and consist of compressive stresses 

on the upper part of the section and tensile stresses on the lower 

part. 

Since only the unbalanced part of the moments of the external 

forces is effective in producing tensile and compressive stresses in 

the beam, it is convenient to have a name for this stress-producing 

moment. Thus, 

The bending moment at a section of a beam is the moment, 

about the section, of the resultant of the external forces 

that lie on one side of the section; that is the algebraic sum 

of the moments, about the section, of the external forces 

that lie on one side of the section. 

The bending moment will be denoted by the symbol M and the 

forces that lie to the left of the section will, as a rule, be used. The 

bending moment at section A A (five feet from Pi) is, 

M = 6500X5-8000X2 =16,500 lb.-ft. 

Now, as noted above, the unbalanced moment of the external 
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forces (bending moment) about the section A A is resisted by the 
moment of the tensile and compressive stresses on the section. 
This moment is called the resisting moment. Hence, 

The resisting moment at a section of a beam is defined 
to be the algebraic sum of the moments of the stresses 
acting on the section, about a line in the section. It will 
be denoted by the symbol Mr. 

But from the condition of equilibrium the sum of the moments 
of all the forces acting on the left portion of the beam (Fig. 746) 
must equal zero. Therefore, 

Moment of external forces = Moment of internal forces; 
that is, 

Bending moment = Resisting moment 
or 

M = Mr. 

Further, from the condition of equilibrium, the sum of all the 
horizontal forces acting on the left portion of the beam (Fig. 746) 
must equal zero. And since no horizontal external forces act on 
the beam, we have 

Algebraic sum of the horizontal stresses = 0. 

That is, the sum of the compressive stresses, denoted by C (Fig. 
746), equals the sum of the tensile stresses, denoted by T. Hence, 
T=C. 

Summarizing: Since any portion of the beam (Fig. 746) is in 
equilibrium the forces acting on the portion must satisfy the 
following equations: 

Algebraic sum of horizontal stresses = 0, 
Algebraic sum of vertical forces = 0, 
Algebraic sum of moments of forces = 0, 

or T=C 
or V=Vr 
or M=Mr.( 38) 

An expression will now be found for the resisting moment Mr 
in terms of the tensile or compressive unit-stress at any point in 
the cross-section of the beam, and the dimensions of the cross- 
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section. The shearing unit-stress in the beam will be discussed 

in Art. 40. 

In discussing the stresses in a beam it is convenient to con¬ 

sider the beam to be composed of fibers, a fiber being a rod having 

an elementary cross-sectional area da and extending the length of 

the beam parallel to the axis of the beam; a fiber unit-stress then is 

the intensity of stress on a section of any fiber, and in general may 

be either a normal or a shearing unit-stress although for the pres¬ 

ent the normal unit-stress only will be considered. 

34. Expression for Resisting Moment. The Flexure 

Formula.—In order to find the sum of the moments of the stresses 

on the fibers at any section of the beam, that is, in order to find 

the resisting moment at any section, the way in which the fiber 

unit-stress varies with the position of the fiber in the beam must 

be known, that is, the law of distribution of the intensity of stress 

over the section must be known. 

Distribution of Stress on Section.—In order to show how the 

unit-stress on a fiber varies with the position of the fiber in the 

beam there is required a knowledge of: 

(а) The way in which the strain of a fiber varies with the posi¬ 

tion of the fiber in the beam when the beam is bent, and 

(б) The relation, for the material of which the beam is made, 

of the unit-stress in a fiber to the strain of the fiber. 

Information concerning these points comes mainly from the 

results of experiments: 

(a) When a simple horizontal beam is bent the fibers on the 

top side shorten and those on the bottom elongate, and the fibers 

in one plane within the beam do 

not deform. This plane is called 

the neutral surface, and the line of 

intersection of the neutral surface 

and a cross-section of the beam is 

called the neutral axis for the 

section. Further, when a beam 

is subjected to bending, experi¬ 

ments show that if two straight lines, DE and FG (Fig. 75) are 

drawn, before the beam is bent, on the side of the beam a short 

distance, MN, apart, these lines will still be approximately 



84 TRANSVERSE LOADS 

straight lines, D'E' and F'G', after the beam is bent.2 Thus, one 

fiber M N, in the neutral surface, remains constant in length and 

The strain of any fiber is directly proportional to the 

distance of the fiber from the neutral surface. Further, 

since the original lengths of all the fibers are equal3 the 

unit-strain of any fiber is also proportional to the distance 

of the fiber from the neutral surface. 

(6) Now if one of the fibers were removed from the beam and 

subjected to an axial load in a testing machine so that the unit- 

stress ^equal to ^ and the unit-strain ^equal to could be 

measured it would be found, as stated in Art. 5, that the unit- 

stress on the fiber is proportional to the unit-strain of the fiber 

'provided that the proportional limit of the material is not exceeded. 

Further, it is assumed that the fiber when in the beam acts accord¬ 

ing to the same law as when tested alone. 
Therefore, since the unit-strain of a fiber is directly propor¬ 

tional to the distance of the fiber from the neutral surface, and 

since the unti-stress on a fiber is directly proportional to the unit- 

strain of the fiber, it follows that 

The unit-stress on a fiber of a beam at any section of the 

beam is directly proportional to the distance of the fiber 

from the neutral axis. 

2 Since the straight lines may be considered to be traces of cross-sectional 
planes, this fact is sometimes stated: “A plane section before bending is a 

plane section after bending;” the essential fact, how¬ 
ever, is not that a plane section is conserved, but 
that a fiber changes its length and that this longitu¬ 
dinal strain is proportional to the distance of the fiber 
from the neutral surface. The selection of plane 

sections is mainly a matter of convenience in explana¬ 
tion. If shearing stresses exist in the beam, two par¬ 
allel plane sections DE and FG (Fig. 76) before bending 
become curved surfaces D'E' and F'G' after bending 

but the longitudinal strains of the fibers are affected very little by the shear¬ 
ing deformation in beams of the usual proportions. 

3 If the beam is a curved beam (not straight before it is loaded) the lengths 
of the fibers between two normal sections of the beam would not be equal and 
hence, although the total deformation would be proportional to the distance 
from the neutral axis, the unit-strain would not be proportional to this distance. 
This demonstration is, then, limited to straight beams. 



EXPRESSION FOR RESISTING MOMENT 85 

Thus, if Sy and sc (Fig. 77) denote the unit-stresses on fibers at 

the distances y and c, respectively, from the neutral axis the above 

statement is expressed mathematically as follows: 

— = - or — = — = a constant. 
sc c y c 

Expression for Resisting Moment.—An expression may now be 

found for the resisting moment (the algebraic sum of the moments 

of the stresses on the cross-section about the neutral axis) in terms 

of the unit-stress on any fiber and the dimensions of the cross-sec¬ 

tion of the beam as follows: 

Fig. 77.—Intensity of stress varies directly as distance from neutral axis. 

The unit-stress, sv, on a fiber at the distance y from the neutral 

axis (Fig. 77) may be assumed to be constant over the cross- 

sectional area, da, of the fiber, and hence, 

Total stress on area of one fiber = syda 

Moment of total stress on one fiber = svyda 

Sum of moments of stresses on all fibers = Mr = j" syy da. 

This may be written 

SyV2da, 

s s 
and since, as shown above, — = — = a constant, this may be written 

V c 

M 
=SyJ'°r ^r=Hj'd2(^a ■ 

But the expression Jy2da is the moment of inertia of the 

cross-section of the beam with respect to the neutral axis, since y 

is measured from the neutral axis (see Appendix II.). Therefore, 

si 
Resisting Moment = Mr = —, 

c 
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in which s is the tensile or compressive unit-stress on a fiber at 
the distance c from the neutral axis, and since the maximum value 
of s is usually desired, the distance c will usually be taken as the 
distance to the most remote fiber. 

Flexure Formula.—But as shown in Art. 33, M = Mr. 

Therefore, 

M=—.(391 
c 

which is called the flexure formula. It expresses the relation 
between the external forces acting on the beam, the tensile or com¬ 
pressive unit-stress at any point in the beam, and the dimensions 
of the cross-section of the beam. If s is expressed in pounds per 
square inch as is customary in the United States then M must be 
expressed in pound-inches, I in inches4, and c in inches. Further, 

- is called the section modulus of the beam and is expressed in 
c 
inches3. 

Position of the Neutral Axis.—The value of I in the flexure 
formula cannot be found unless the position of the neutral axis in 
the area is known. Now, as noted in Art. 33, the sum of the com¬ 
pressive stresses on the section must be equal to the sum of the 
tensile stress on the section, that is, the sum of all the horizontal 
stresses at any section must be equal to zero; this condition serves 
to locate the neutral axis. Thus, 

S horizontal stresses on section = 0, 

-yda=0, 
y 

that is (see Fig. 77), 

or 

and hence 

But ~ is not equal to zero. Therefore, 

^ Syda = 0, 

f 
~^Vda=0 , since —=a const. 

y 

Jyda = 0, 

in which y is measured from the neutral axis, but Jyda is, by 
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definition, the moment of the cross-sectional area of the beam with 

respect to the neutral axis (see Fig. 78), and may be written ay in 

which a is the total area of the cross-section and y is the distance 

of the centroidal axis from the neutral axis, about which moments 

are taken. Thus, 

yda = ay — 0. 

But a is not equal to zero. Therefore, 

y = 0, Fig. 78. 

which states that the distance from the centroidal axis to the 

neutral axis is zero, and hence the neutral axis is coincident with 

the centroidal axis. It is assumed that the student is familiar 

with the methods of locating the centroids of area; this topic, 

however, is treated in Appendix I. Further, the methods for 

determining the moment of inertia of an area with respect to an 

axis is discussed in Appendix II. 

5^ \ Assumed position 
^ \\, of neutral axis 

"* > \ 
^Centroidal 

axis 

da 

ILLUSTRATIVE PROBLEMS 

Problem 76. A simple beam having a rectangular cross-section (Fig. 79) 
is subjected to a uniformly distributed load of 400 lb. per ft. (including the 
weight of the beam) over the whole span, and a concentrated load of 2000 lb. 
at a distance of 4 ft. from the left support. Find the tensile unit-stress on 
the outer fiber of the beam at the section AB, 5 ft. from the left support. 

Solution.—First Method.—The reactions are found to be 

R, = 47001b., #2 = 3700 lb. 

The bending moment M at the section AB is 

M = 4700X5-400X5X2.5-2000X1 

= 16,500 lb.-ft. = 198,000 lb.-in. 
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The centroidal axis (and hence the neutral axis) of the cross-section is the 
central horizontal axis, xx, and the moment of inertia of the cross-section 
about the neutral axis is (see Art. 165) 

/= T\bd3 = rs6(12)8 = 864 in4. 

The tensile unit-stress on the bottom fiber at the section AB, then, is 

Me 198,000X6 

S_T~ 864 

= 1370 lb. per sq. in. 

provided that this unit-stress is not greater than the proportional limit of the 
material. A compressive unit-stress of the same magnitude occurs on the 
top fiber. 

Second Method of Solution.—Instead of expressing the resisting moment 
as the algebraic sum of the moments of the stresses on the fibers of the cross- 
section, which leads to the expression sl/c, the resisting moment may be 
expressed as the moment of the couple formed by the resultants of the tensile 
and compressive stresses. Thus as shown in Fig. 80 the action line of the 
resultant, C, of the compressive stress is f of OA from O, and similarly the 
resultant T acts at a distance of f OB from O. Hence the resisting moment is 
CX\d or TXfd. Further, the magnitude of C (and T) is the product of the 
average unit-stress, |s, on the area above (or below) the neutral axis and that 

area. Thus 

Fig. 80.—Resisting couple. 

and hence, 

C = T=hsXhbd, 

and this may be written 

C = T=-X-bd\ 
c 8 

Therefore the resisting moment 

si 2 
Mr=-X-bd*X-d 

c 8 3 

bd3 

12’ 

bd3 si 

12=~c’ 

which is the same equation as used in the first method of solution. It is im¬ 
portant to note that the resultants T and C do not act at a distance of f of c 
from O unless the section of the beam is of constant width. 

Problem 77.—A T-beam (Fig. 81) is subjected to a concentrated load of 
4000 lb. at the center of the span. The beam is made of material having a tensile 
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proportional limit of 4000 lb. per sq. in. and a compressive proportional limit 
of 8000 lb. per sq. in. Find the maximum tensile and compressive unit-stresses 
at the mid-span section, and find the ratios of these stresses to the proportional 
limits. 

Solution.—The distance, y, of the centroidal axis (and hence of the neutral 
axis) from the bottom line of the section is found to be 3 in. Thus (see Art. 
160), 

ay = 2a0?/o 

_ 12X5+12X1 0 
y =-=3 
y 12+12 

in. 

The moment of inertia of the cross-section with respect to the neutral axis 
is found as follows (see Art. 166): 

Jx = ts2(6)3+12X(2)2+tV6(2)3+12X(2)2 

= 136 in.4 

The bending moment about the mid-section is 

M = RxX- = 2000X72 = 144,000 lb.-in. 
z 

Therefore, the maximum tensile unit-stress (on the bottom fiber of the beam) 
at the mid-section is 

Me 144,000X3 
Sf = 3180 lb./sq. in. 

I 136 

and the maximum compressive unit-stress (on the top fiber) is 

5 5 
Sc=-S< = - 3180 = 5300 lb. per sq. in. 

3 3 

The ratio of each stress to the corresponding proportional limit is given 
below. Thus the tensile stress is about 0.8 of the tensile proportional limit 
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whereas the compressive stress, although larger than the tensile stress, is only 
0.66 of the compressive proportional limit of the material: 

= 0.795 (tension), = 0.662 (compression) 

This problem shows the advantage of a T-section (or a similar section) for 
material (such as cast iron) that is not equally strong in tension and compres¬ 
sion. 

PROBLEMS 

78. Find the fiber unit-stress at a point on the section AB (Fig. 79) at a 
distance of 2 in. from the top face of the beam. Ans. s = 913 lb. per sq. in. 

79. Find the unit-stress on the bottom fiber of the beam in Fig. 79 on a 
section beneath the concentrated load. 

80 Find the maximum compressive unit-stress on a section of the beam in 
Fig. 81 at a distance of 4 ft. from the left end. 

81. A steel shaft 4 in. in diameter is used as a cantilever beam and loaded 
as shown in Fig. 82. Find the maximum unit-stress in the section, AB, at 
the wall. Ans. s = 6880 lb. per sq. in. 

500 lb. 1000 lb. 
300 lb. per ft. 

niiiiiiiiiiiii'iTTrm T 
j 2- 

—ft 

w ~r 
w 

, i 
ZZZZA^,, 

<-4 

Fig. 83. 

82. Find the maximum tensile fiber unit-stress on the section above the 
left support of the cast-iron beam shown in Fig. 83. Find also the maximum 
tensile fiber unit-stress on a section midway between the supports. State 
in each case whether the fiber on which the unit-stress occurs is on the top or 
bottom of the beam. 

35. Section of Maximum Bending Moment.—If a beam has a 

constant cross-section throughout its length, the values of - 
c 

(section modulus) for all sections are equal, and hence the maxi- 

sl 
mum value of s in the flexure formula, M = —, occurs in the sec- 

c 
tion at which the bending moment, M, is a maximum. It is 

important, therefore, to obtain a method of locating the section at 
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which the bending moment is a maximum. This section is called 
the dangerous section of the beam, and may be located in accordance 
with the following statement: 

The section of a beam at which the bending moment is 
maximum is the section at which the vertical shear is either 
equal to zero or changes sign. 

Proof.—In Fig. 84 is represented a beam subjected to a con¬ 
centrated and a uniformly distributed load. The bending moment, 
MX) at the distance x from the left, support is 

Mx=RlX-P(x~a)-~. 

Now the value of x that will make Mx a maximum is the value 
that will make the first deriv¬ 
ative of Mx with respect to x 
equal to zero. The first deriv¬ 
ative of Mx with respect to x 
is 

— =Ri-P-wx. (40) 

P 

W lb. per ft. 

iiuuJ win iiiiiiiiiiiiiiiiiiiiii 
\ x~^i 
IR. 

tR 

Fig. 84. 

Therefore, the value of x that will make Mx a maximum may be 
found from the equation 

Ri — P—wx = 0. 

But Ri — P—wx is the vertical shear for the section at the 
distance x from the left support. Therefore, the section at which 
the moment is maximum is the section for which the vertical shear 
is zero. 

A convenient way of locating the section for which the vertical 
shear is zero (dangerous section) is to draw a shear diagram as 
discussed in the following article. 

Further, the relation between the bending moment and the 

vertical shear found above, namely V = is of great importance; 

it will be discussed in greater detail in connection with shear and 
moment diagrams in the next article. 
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An alternative method of deriving this equation is as follows: 
In Fig. 85 is shown a part of a beam included between two sections 

a distance dx apart on which a distrib¬ 
uted load acts; the load per unit of 
length being w. All the forces acting 
on this part of the beam are shown in 
Fig. 85, and since these forces hold the 
part in equilibrium, the algebraic sum 
of their moments about any point in 
the plane must equal zero. Hence 
if the point 0 is taken as the mo- 

M+Vdx—wdxXhdx— (M+dM) = 0, 

and since products of differentials may be neglected this equation 
reduces to 

Vdx=dM or V=^.(41) 

36. Shear and Moment Diagrams.—Shear Diagram.—A shear 
diagram for a beam is a curve in which the abscissas represent 
distances along the beam and the ordinates represent the vertical 
shears for the sections at which the ordinates are drawn. 

For example let it be required to draw a shear diagram for the 
beam shown in Fig. 86(a). The reactions are found to be 

Ri = 7000 lb. and R2 = 5000 lb. 

Now the vertical shear for section A (just to the right of the left 
support) is Va = Ri = 7000 lb. upward; it is represented by AE 
in Fig. 86(6), an upward shear being considered positive and 
plotted above the base line. 

The vertical shear for section C (just to the left of the load 
P) is 

Vc = 7000 - 4 X 500 = + 5000 lb. 

and the vertical shear for any section between A and C at the 
distance x, say, from A is 

wdx 

0 

*dx> 
V 

'V+dV 

M + dM 

Fig. 85. 

ment center we have, 

F* = 7000—5002 . . (42) 
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and hence the vertical shear decreases with x at the constant rate 

of 500 lb. per foot of length of the beam from 7000 lb. at A (x = 0) 
to 5000 lb. at C (x = 4) as shown in Fig. 86(6). 

P= 4000 lb. 

Fig. 86.—Shear and moment diagrams. 

The vertical shear at section D (just to the right of the con¬ 

centrated load) is 

Fi> = 7000-500X4-4000 = + 1000 lb. 

Thus, there is an abrupt change in the vertical shear in passing 

from sections C to D due to the concentrated load, but the shear 
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does not (in this particular problem) pass through zero under the 

load; the shear must, therefore, be equal to zero for some section 

to the right of the concentrated load. Now, the vertical shear for 

any section between D and B at a distance x from the left sup¬ 

port is 

Vx = 7000—4000—500x,.(43) 

and hence the vertical shear decreases at the constant rate of 500 

lb. per foot of length of the beam from 1000 lb. at D to —5000 lb. 

for a section just to the left of the right reaction. At 6 feet from 

the left support the vertical shear is zero and hence the bending 

moment at this section is maximum. 

It is important to note that if a concentrated load acts on a 

beam in addition to a distributed load the shear may pass through 

zero under the load, and if it does the location of the dangerous 

Section cannot be found by equating any expression such as 

equations (42) and (43) to zero and solving for x. It is desirable, 

therefore, in finding the dangerous section, to plot a shear diagram. 

If a beam is acted on by concentrated loads only, the dangerous 

sections will always occur under one of the loads since the shear 

changes only at the sections where the loads act. 

Moment Diagram.—A moment diagram for a beam is a curve in 

which the abscissas represent distances along the beam and the 

ordinates represent the bending moments at the sections at which 

the ordinates are drawn. 

Let it be required to draw a moment diagram for the beam 

shown in Fig. 86(a). The bending moment at the section A is 

equal to zero since the moment arm of Ri about A is zero. The 

bending moment at any section between A and (7, at a distance x 
from the left support, is 

Mx=RlX-^f}.(44) 

in which x can not have a value greater than 4. The bending 

moment at any section between D and B (x greater than 4), at a 

distance x from the left support, is 
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in which x cannot have a value less than 4. The value 

of the bending moment at the section beneath the load 

(x=A) may be found from either equation by making x equal 

to 4. 

If various values of x from 0 to 4 be substituted in equation 

(44) and the resulting values of the bending moments plotted, the 

moment diagram obtained is AF (Fig. 86c), and if values of x 
from 4 to 16 be substituted in equation (45) the resulting moment 

diagram is FB (Fig. 86c). 

It will be noted that the maximum ordinate to the moment 

curve occurs at the section for which the shear is zero. Further, 

it is important to observe that the moment diagram is composed 

of two distinct curves, AF and FB, which have only one point, F, 
in common, and that the maximum bending moment can be found 

from the equation of only one of these curves. Thus in the beam 

of Fig. 86(a) the value of x for which the bending moment is maxi¬ 

mum can not be substituted in equation (44), since 4 is the greatest 

value x can have in this equation. If values of x greater than 4 

are substituted in equation (44) the corresponding values of Mx 
will have no physical meaning; and if values of x less than 4 are 

substituted in equation (45) the corresponding values of Mx will 

have no physical meaning. 

Sign of Bending Moment.—The bending moment at any section 

of a horizontal beam is considered to be positive when it produces 

compressive stress on the top fibers of the beam at the section and 

tensile stress on the bottom fibers. Thus, if the bending moment 

is obtained from the forces that lie to the left of the section the 

bending moment is positive when it is clockwise, and if obtained 

from the forces to the right of the section the bending moment is 

positive when it is counterclockwise. 

ILLUSTRATIVE PROBLEMS 

Problem 83.—A solid cylindrical steel shaft is used as a simple beam over 

a span of 12 ft. and is loaded as shown in Fig. 87(a). Draw the shear and 

moment diagrams and find the diameter of the shaft if the working fiber 

unit-stress is 16,000 lb. per sq. in. 

Solution.—The reactions are found to be 

= 6883 lb. and R2 = 5717 lb. 
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The shear and moment diagrams are shown in Fig.^87(6). The dangerous 

section is under the concentrated load and the maximum moment is 

M = 6883X7—800X7X1 

= 28,580 lb.-ft. 

The maximum fiber unit-stress is 

28,580 X12 X- 
Mc 2 

S=T= 

oT 
Hence, 

„ 28,580X12X32 . 
d3 =-———-=218 in.3 

16.000 X*- 

whence 

d = 6.02 in. 

Problem 84.—Show that the maximum bending moment for a simple 

beam loaded as shown in Fig. 88(a) is 

M = | Wl 

in which W is the total load on the beam and l is the span of the beam. 

Solution.—From symmetry it is known that the shear is zero at the center 

of the span and that each reaction equals W/2. Let the intensity of the load 

at the center be wc lb. per ft. Now the resultant, R, of the load to the left of 

the mid-span section is equal to the average load per foot (wc/2) times the 

length (/). But the action line of R is at the distance of f Xl/2 from the left 

support. Thus the distributed load to the 

left of the center of the beam may be re¬ 

placed by R as shown in Fig. 88(6) in get¬ 

ting the moment about the mid-span sec¬ 

tion. The bending moment about the 

mid-span section then, is 

J-WL-^lxiL 
• 2 2 2 2 32 

But, the average load per foot 

the span length (l) equals W, 

Hence, 

^ ) times 

l Wl 1 
M = W-= -Wl. 

4 12 6 
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PROBLEMS FOR ARTICLES 34 TO 36 

85 to 90. Verify the shear and moment diagrams (shown in Figs. 89 to 94); 

also verify the expressions for the vertical shear and the bending moment at a 

section at the distance x from the left end of the bean, and the expressions]for 
the maximum moment, as given in Figs. 89 to 94. 

Prob. 85. 

W 

Mx=-Wx, Mmax=-Wl. 

Fig. 89. 

Prob. 86. 

Fig. 90. 

Prob. 87. 

. W w W , 
Vx=-^-W= when 

tO /. 

w 
Fmax. = ±^-. 

w i 
Mx = yx, when x = 0 to 

W 
Mx = — W U-o) . when 

x=\t01 

M — — — xWl M max. — ~2 2 — 4 W 

Fig. 91. 

Vx ="2 ~wx . W = wl. 

_ W 
' max. -L n • 

W wx2 
Mx ^x 2’ 

Wl Wl 1W7 , 72 
Mmax. =“2*2—2 4 = ^ = ^ 

Fig. 92. 
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Prob. 89. 

W 

when x = 0 to a. 

7 ™and 

— W(x—a) 

when x = a to l. 

T. _ Wa _Wb 
Vmax. — > ^max. ——j—a. 

Fig. 93. 

Prob. 90. 

W 
Vx = 0, and M*=—a, 

when x = a to (a+6). 

W 
2 

TV 
and M* = IFa—jr (x — b) 

when z = (a+5) to i. 

W 
= 2 

Fig. 94. 

91. Plot a shear diagram and find the dangerous section for the beam shown 

in Fig. 95. Find also the maximum bending moment and the maximum fiber 

unit-stress in the beam. 

92. Draw to scale a shear and a moment diagram for the beam shown in 

Fig. 96. If the beam is a cylindrical bar what diameter should it have if the 

working fiber stress is 16,000 lb. per sq. in.? Ans. d = 4.97 in. 

400 lb. per ft. 

2000 lb. 
<-3-—>| 

min 1111111111 nr lllllll 
l 

J* 

' Fig. 95. 

4000 

L' Q N Ilf d/ V 

Hb. 

s A N. rx o .>rx > 

500 lb. per ft. 1 
s-*±-^ 

rmriiiimmiiiii 1 

16 >| 

Fig. 96. 

93. A simple beam having a span of 12 ft. is made of yellow pine for which 

the working fiber stress is 1000 lb. per sq. in. The beam carries concen¬ 

trated loads of 2000, 4000 and 6000 lb. at distances of 3, 6 and 7 ft., respectively, 

from the left support and also a total uniformly distributed load of 1200 lb. 

If the width of the beam is 10 in. what should be the depth ? 

Ans. d = 15.2in. 

94. A freight-car axle (Fig. 97) is 4 in. in diameter. The distance from the 

center of an axle box to the action line of the rail pressure is 8 in. and the 
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distance between the rail pressures is 4.90 ft. Find the maximum fiber 

unit-stress in the axle if each rail pressure is 5 tons. 

95. The steel crankpin (Fig. 98) of a steam engine has a force of 25,000 lb. 

transmitted to it by the connecting rod. The dimensions of the pin as shown 

in Fig. 32 were determined from the allowable bearing pressure. Find the 

allowable bearing pressure, and the fiber unit-stress. The load may be 

assumed to be uniformly distributed over the length of the pin. 

Arts. s& = 800 lb. per sq. in., s = 6360 lb. per sq. in. 

96. A simple beam having a span of 16 ft. carries a total uniformly dis¬ 

tributed load of W lb., and a concentrated load, equal to IF/2, at the center of 

the span. If the cross-section of the beam is rectangular, 6 in. wide by 12 in. 

deep, and the allowable fiber unit-stress is 800 lb. per sq. in., find the value 

of W. 

97. The cast-iron frame shown in Fig. 99 is subjected to a load P of 4000 

lb. Find the maximum tensile and compressive fiber stresses at the section 

AB. Ans. i/i = 3.5 in., 7 = 392 in.4, st = 857 lb. per sq. in., 

sc = 1590 lb. per sq. in. 

Fig. 100. 

98. What force P (Fig. 100) will cause a maximum fiber unit-stress of 

16,000 lb. per sq. in. in the I-beam ? 
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99. The load P (Fig. 101) is 1000 lb. What should be the depth d of the 

timber beam A if the working unit-stress in the material is 1200 lb. per sq. in ? 

Ans. <2 = 9.5 in. 

0-S' • 

A v 

d 

£ ,B rf_f 

Fig. 102. 

100. The simple timber beam shown in Fig. 102 has a hole 4 in. in diameter 

bored through the beam, the center line of the hole lying in the neutral surface 

and in the section AB, 3 ft. from the left support. The beam is subjected to 

a load P of 5000 lb. Find the maximum unit-stress that occurs in the section 

AB and also in the section for which the vertical shear is zero. The beam has 

a rectangular section 4 in. wide and 12 in. deep. 

101. Sand is piled on a floor so that the load on the beams supporting 

the floor varies from zero pressure at one end 

to a pressure of w lb. per ft. at the other end 

(Fig. 103). Show that the vertical shear is 

zero for a section at a distance of 0.591 from 

the left support, and that the maximum bend¬ 

ing moment is 

Fig. 103.—Non-uniformly di.s- iq/ 

tributed load. ‘ M=-^=Wl. =0.128 Wl . . (47). 

102. Draw the shear and moment diagrams for the beam shown in Fig. 104. 

Find the maximum unit-stress in the beam if the beam has a rectangular 

cross-section 4 in. wide by 8 in. deep. Ans. $ = 983 lb. per sq. in. 

2000 lb. 2000 lb. 
1000 lb. 

Fig. 104. 

Note.—The following problems are to be solved with the aid of a steel 

company’s handbook. Find the missing terms in the table. All the 

beams are simple beams and all distances are measured from the left 
support. 

v«*> 
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Prob. 
No. 

Length 
of Span 

(feet) 

Uniform 
Load 

(lb./ft.) 

Concentrated 
Load 

(lb.) 

Distance to 
Concentrated 

Load (ft.) 
I-Beam Size 

103 10 2000 0 0 ? 
104 12 ? 0 0 10" 25-lb. 
105 14 0 28000 7 ? 
106 14 0 ? 7 9" 21-lb. 
107 16 1000 10000 8 ? 

37. Relation between Shear and Moment.—In Art. 35 it was 

shown that 

which states that the vertical shear for a section of a beam is equal 

to the rate, with respect to the distance along the beam, at which 

the bending moment is changing at the section. Or, the equation 

may be written 
dM = Vdx, 

which states that the difference, dM (Fig. 105), between the bend¬ 

ing moments at two sections that are the distance dx apart is equal 

to the area, Vdx, under the shear 

curve between the two sections. 

Now the difference (M2—Mi or 

AM) between the bending moments 

at the sections X2 and x\ would be 

A M = 
ru2 

JMy 
dM 

(Fig. 105). But, from the above 

equation, 

Fig. 105.—Relation between bend- 
(48) ing moment and vertical shear. 

r 
dM = 

JMi Jx 1 

rx2 
And I Vdx represents the area under the shear curve between 

Jx 1 
the ordinates x\ and X2, and hence. 

M2—Mi = area under the shear curve between ordinates 

xi and X2. Therefore, 
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the difference between the bending moments at two sections 

of a beam is represented by the area under the shear curve 

between ordinates at the two sections. 

Fig. 106.—Shear diagram. 

Thus, the bending moment at a given section of a simple beam 

is represented by the area under the shear curve between the end 

of the beam (M = 0) and the given 

section. For example, let it be 

required to find the maximum 

moment for a simple beam sub¬ 

jected to a total load W, uniformly 

distributed over the entire span, 1. 

The shear diagram is shown in 

Fig. 106. According to the above proposition the difference 

between the bending moments at the center and end is represented 

by the area under the shear curve between these two sections. 

But the moment at the end is zero and hence the moment at the 

center is 

Mc = \ base X altitude 

2 2 X2 8 ’ 

which checks the result found in Prob. 88. 

PROBLEMS 

108. Show, by the above method, that the maximum bending moment for 
a simple beam carrying a concentrated load P at mid-span is, M = \Pl. 

109. Show, by the above method, that the bending moment at any section 
within the middle third of a beam when loaded with equal concentrated loads 

at the third-points is, M = %Pl. 

110. Find, by the above method, the maximum moment for the beam 
shown in Fig. 93. 

38. Overhanging Beams.—The discussion in the preceding 

articles concerning the stresses developed in simple and cantilever 

beams also applies to overhanging beams. The bending moment 

at a section in an overhanging beam, however, may be negative, and 

there are two maximum moments to be considered—the maximum 

positive moment and the maximum negative moment. In other 

words, the vertical shear passes through zero at two or more 

sections of the beam. Further, since the moment changes from a 
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positive to a negative value it must be zero at some section; 

the section at which the bending moment is zero is called the 

point of inflection. 

The above facts will be discussed in connection with the follow¬ 

ing illustrative problem. 

ILLUSTRATIVE PROBLEM 

Problem 111.—A 6-in. by 12-in. by 14-ft. timber beam is supported and 

loaded as shown in Fig. 107(a). (a) Draw the shear and moment diagrams. 

(b) Find the position of the dangerous section. (c) Find the maximum 

positive moment. (d) Find the maximum negative moment, (e) Find the 

point of inflection.' (/) Find the maximum fiber unit-stress. 

Solution.—The reactions are found to be 

#i = 4600 lb. and #> = 7400 lb. 

(a) The shear and moment diagrams are shown in Fig. 107(6). The 

vertical shear is equal to zero for a section 3.25 ft. from the left support, and 

passes through zero at the section 

above the right support. These 

two sections, then, are the danger¬ 

ous sections. The bending mo¬ 

ment at any section to the left of 

the first concentrated load (Pi), 

at a distance x from the left sup¬ 

port, is 

Mx=4600X-800-, . (49) 

in which x has any value from 0 

to 3. The bending moment at 

any section between Pi and the 

right reaction is 

x2 
Mx = 4600.r—800— 

A 

—2000(x—3), (50) 

in which x cannot have a value 

less than 3 ft. or greater than 10 

ft. The bending moment at any section between the right reaction and the 

right end of the beam is 

ikfx = 4600x+7400(x-10)-2000(x-3)-8000(a;-5), . . . (51) 

in which x cannot be less than 10 or greater than 14 ft. Or, if x is measured 

from the right end of the beam instead of the left end then the bending moment 

at any section between P2 and P2 is 

Mx= —2000a:. 

P, = 2000 lb P2 = 2000 lb. 

(52) 
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Equations (51) and (52) will give, of course, the same value for the bending 

moment at a given section of the beam. 

(6) The maximum positive moment is 
800X(3.25)2 

Mpos. = 4600 X3.25 - 2000 X 0.25--- 
A 

= 10,230 lb.-ft. 

(c) The maximum negative moment, obtained from the forces to the left 

of the section, is 

Mneg = 4600 X10 - 2000 X7 - 800 X10 X 5 

= -8000 lb.-ft. 

Or, when obtained from the forces to the right of the section, it is 

Mneg = -2000X4= -8000 lb.-ft. • 

(d) The bending moment changes signs at a section between the dangerous 

sections. Hence, to locate the inflection point equation (50) may be equated to 

zero. Thus, 
3/2 

Mx = 4600a: -800- - 2000(x-3)= 0. 

Therefore, 

x = 0 or 8.63 ft. 

and hence the inflection point is 8.63 ft. from the left support. 

(e) Since the maximum positive moment is larger than the maximum 

negative moment, the maximum fiber unit-stress is 

Me 10230X12X6 

S~~T~ T26X(12)3 

= 852 lb. per sq. in. 

PROBLEMS 

For each of the beams described in the following problems obtain: (a) The 

shear and moment diagrams; (6) the maximum positive and negative bending 

moments; (c) the points of inflection; (d) the maximum fiber unit-stress in 

the beam. The weight of the beam may be neglected in each problem. 

112. The beani shown in Fig. 108 has the following dimensions: 6 = 8 in., 

d = 10 in., and the loads are, P = 1000 lb. and w = 300 lb. per ft. 

Ans. (d) s = 1050 lb. per sq. in. 

P 
W lb. per ft. 

mn n mm i m iTimT mnraT 

H- --—16-- —4—> 

□$ 
T 

Fig. 108. Fig. 109. 

113. The diameter, d, of the beam shown in Fig. 109, is 4 in. and the loads 
are Px = 1500, P2 = 6000 lb., and P3 =3000 lb. 

CO
?*

 



ECONOMICAL SECTIONS OF BEAMS 105 

114. See the beam shown in Fig. 73, and consider the beam to have a 
rectangular cross-section 4 in. wide and 12 in. deep. 

39. Economical Sections of Beams.—The efficient use of ma¬ 

terial in a force-resisting member requires (a) the selection of 

available material that is well suited to the use of the member, and 

(6) the distribution of the material in the member so that it can 

best resist the forces acting on the member. The use of material, 

however, must always be considered in relation to the cost involved. 

The selection of engineering materials best suited to various 

purposes is discussed in Part II. We are here interested mainly 

in the effect of the distribution of the material in a beam on the 

resistance of the beam to external loads; this involves (a) the 

effect of the shape of cross-section and (6) the effect of a variation 

of size of cross-section along the beam. 

(a) Effect of Shape of Cross-section.—If a beam having a con¬ 

stant cross-section safely resists static loads the maximum fiber 

T 

L 
Fig. 110.—Sections having large values of 

unit-stress at the dangerous section must not exceed the allowable 

or working unit-stress that experiments and experience have shown 
Me 

to be permissible. That is, s in the flexure formula, s = ~ff> must 

not be greater than the working unit-stress when M is the maximum 

bending moment. 

The flexure formula shows that, when a given unit-stress s is 

developed in the beam, the bending moment M required to develop 

this unit-stress is large when - is large. Now - is made large by 
c c 

forming the cross-section so that the greater part of the area is as 

far from the neutral axis as practicable. Thus, steel beams are 

rolled in the form of I-sections (Fig. 110a), channel-sections (Fig. 

1106), etc.; further, built-up steel beams of various shapes (Fig. 

110c and d), and also cast-iron beams are made to conform to this 

principle. Steel beams are made with the two flanges equal in 

area since the proportional limits in compression and tension are 
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approximately equal. Cast-iron beams, however, are cast with 

the tensile flanges larger in area than the compressive flange (see 

Fig. 99) since the compressive strength of cast iron is much larger 

(about four times) than the tensile strength. Although cast-iron 

beams are rarely used in buildings or bridges, they are frequently 

used in machine frames that are subjected to bending. 

(b) Effect of a Varying Section Along the Beam.—As discussed 

in Art. 36 the bending moment, in general, varies along a beam and 

is maximum at one section of the beam. If, then, a beam has a 

constant cross-section (ffc = Si constant the maximum fiber unit- 

stress will occur on the outer fiber of the section at which the 

Fig. 111.—Beams that approach the conditions for uniform stress. 

bending moment is maximum, and the unit-stress in the outer 

fibers at all other sections will be less than that at the dangerous 

section. Therefore, when the beam is carrying the load that causes 

the allowable fiber unit-stress in the beam there is much material 

in the beam on either side of the dangerous section that is under¬ 

stressed, and hence this under-stressed material could be saved by 

varying the cross-section of the beam so that the ^ would vary as 

the bending moment M varies. This would cause the unit-stresses 

in the outer fibers of all sections to be equal, since s = ~. 

c 
Rolled steel beams nearly always are beams of constant cross- 

section since the cost of rolling a beam of variable cross-section 
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would offset the saving in material. Built-up beams, such as leaf 
springs (Fig. 111a) and plate girders (Fig. 11 Id), frames of cars 
(Fig. llle), forged axles (Fig. 1116) and turned axles (Fig. 111c), 
etc., are frequently made with a variable section so that the beam 
approximates a beam of uniform strength. 

40. Shearing Stress in a Beam—In Art. 33 it was shown that 
in a section of a beam there is shearing stress as well as tensile and 
compressive stresses, and that the total resisting shearing stress, 
Vr, in any section is equal to the vertical shear, V, for the section. 
That is, V=Vf. In the preceding articles the tensile (or compres¬ 
sive) unit-stress at any point in the beam was found in terms of 
the external loads and the dimensions of the beam, and the problem 
now to be considered is that of expressing the shearing unit-stress 
at any point in a beam in terms of the external loads and the 
dimensions of the beam. 

If the shearing unit-stress on the cross-sectional area, a, of a 
beam were constant and equal to ss the resisting shear, Vr, would 
be equal to ass, and hence the shearing unit-stress at any point of 

the area would be equal to — l ss = — j. But, the shearing unit- 

stress is not constant over the area, as will be shown later in this 
V 

article, and hence the equation ss=— gives only the averages hearing 

unit-stress. Shearing stress in beams is of importance mainly in 
timber beams, concrete beams, and some built-up steel beams. 

As stated in Art. 17, if a shearing unit-stress occurs on one 
plane at a point in a body, a shearing unit-stress of equal magni¬ 
tude must occur at the same point on another plane at right angles 
to the first plane. Thus, in Fig. 112, X represents a small block 
in a beam; there is a vertical upward shearing stress on its left face 
and a vertical downward shearing stress on its right face, but these 
two forces form a couple which would rotate the block and hence, 
since the block is in equilibrium, there must be horizontal shearing 
forces on its upper and lower faces as indicated in Fig. 112. 
Thus we are led to the conclusion (see Art. 17 for proof) that the 
vertical and horizontal shearing unit-stresses at any point are 

equal. 
The horizontal shearing unit-stress (and also the vertical 

shearing unit-stress) at any point in a beam may be found, in terms 
of the external forces and the dimensions of the beam as follows: 
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Let a block, B, having a small width dx (Fig. 112) be removed 

from the beam and be replaced by the forces that the block was 

exerting on the beam. These forces must have been exerted, of 

course, on the faces that were in contact with the beam. Now, as 

shown in Art. 34, the compressive (or tensile) unit-stress at any 

point on any cross-section of the beam varies directly as the 

distance of the point from the neutral axis, being zero at the 

neutral axis. Thus the block B must have pushed horizontally at 

its two end faces as shown in Fig. 112(a) (or the beam must-have 

pushed on the end faces of the block as shown in Fig. 1126). 

But since the bending moments at the two sections are not, 

in general, equal, the sum of the stresses on the two faces are not 

equal and hence there must be a shearing stress on the bottom face 

of the block. 

(6) 

Thus, if H' and H represent the sum of the stresses on the 

right and left faces, respectively, the total shearing stress on the 

bottom force is equal to H'— H, assuming H' to be larger than 

H. Further, since the area dx-t on which the shearing stress 

occurs is small the shearing unit-stress, ss, may be assumed to be 

constant over the area and hence the total shearing stress is ss • dx ■ t. 
Therefore, 

ssdx-t = H' — H. 

Now Hr = I Sy'da in which sry is the unit-stress in the plane FG 
Jv 0 

on a fiber at the distance y from the neutral axis (Fig. 112a). 

s ^ s^ 
Further, — = -=^=a constant (Art. 34.) Therefore, 

y c 

yda and similarly 
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moments at the right and left sections respectively. Therefore, 

But M'—M = dM since the two sections are the small distance 
dx apart. Hence 

and from Art. 37, 

dx 
Therefore, 

(53) 

in which ss is the horizontal shearing unit-stress (and also the 

vertical shearing unit-stress) in a cross-section for which the 

vetical shear is V, and at a point whose distance from the neutral 

axis is y0, the thickness of the beam at the distance y0 from the 

neutral axis being t; 7 is the moment of inertia of the whole cross- 

section of the beam about the neutral axis. The expression 

yda is the first moment (often called the statical moment), 

about the neutral axis, of that part of the cross-sectional area of 

the beam between the plane on which the horizontal shearing 

unit-stress occurs and the outer face of the beam (that is, between 

y0 and c). This area is the cross-hatched area a' in the end view 

in Fig. 112a. Further, if the distance, y, of the centroid of the 

area a' from the neutral axis is known, the moment of this area 

may be found from the product a'y since 

Hence the above equation may be written 

yda = a'y (Art. 158). j 
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The above equations are valid only when the tensile or com¬ 

pressive unit-stress in the beam does not exceed the proportional 

limit of the material since the flexure formula, which is based on 

this assumption, was used in its derivation. 

It is important, next, to locate the point in a beam at which the 

shearing unit-stress, ss, is a maximum. If the beam has a constant 

cross-section, I and t are constant, and hence the maximum value 

of ss in equations (53) and (54) will occur in the section of the beam 

for which V is maximum; for a simple beam subjected to a uniform 

load V is maximum close to one support. Further, in any section 

of constant thickness, will te maximum when I yda or a'y is 

Fig. 113.—Variation’of shearing stress in length of beam. Fig. 114.—Varia¬ 
tion of shearing 
stress over sec¬ 
tion of beam. 

maximum, which occurs when y0 is zero, that is, ss is maximum 

at the neutral surface. Thus in a simple beam of constant thickness, 

subjected to a uniform load the horizontal shearing unit-stress 

varies throughout the beam as shown in Fig. 113, and at any point 

in a section the horizontal and vertical shearing unit-stresses are 

equal as indicated in Fig. 114. 

Thus, the maximum shearing unit-stress in any section of a 

beam having a rectangular cross-section hd (Fig. 113) is 

V - V ,dd 
s‘ = Tta'y = ^bcp--V62X4 

=3 V =3F 

2 hd 2 a’ 

in which a is the area of the whole cross-section. Hence the 

maximum value sa in any section of a rectangular beam is 50 
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per cent greater than the average shearing unit-stress in the sec¬ 
tion. If a beam has a circular cross-section the maximum value 

of is 33J per cent greater than —, that is, 
CL 

4 V 
Ss = o —• 3 a 

ILLUSTRATIVE PROBLEMS 

Problem 115.—Find the maximum shearing unit-stress in a 15-in. 45-lb. 
channel (Fig. 115a) when used as a simple beam on a 12-ft. span and subjected 
to a concentrated load of 20,000 lb. at the center of the span. (Neglect the 
weight of the beam.) 

Solution.—A steel maker’s handbook gives the following values in addition 
to those shown in Fig. 115(a). 

I a; = 375 in.4 a = 13.2 sq. in. 

The maximum shearing unit-stress is 

1" 
s,=yay 

V = 10,000 lb. /=375 in4. ( = 0.62 in. 

The value of a'y is most easily found as the sum of the moments of the areas 

ai and a2 (Fig. 1156). Thus, 

a'y=axyi+a2y2 

= (3X0.65)X^7.5-^j+(0.62X7.5)X3.75 

= 31.5 in3. 

10,000 31.5 

375 *0.62 

= 1350 lb. per sq. in., 

Therefore 
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and hence the maximum shearing unit-stress in the beam is 1350 lb. per sq. in., 
provided that the tensile or compressive unit-stress does not exceed the elastic 
limit of the material. 

The maximum tensile or compressive unit-stress is 

Me 10,000X72X7.5 

I ~ 375 
= 14,400 lb. per sq. in. 

which is less than the elastic limit of the material. 
The average shearing unit-stress is 

V 10,000 

Sa', = a=l3^i = 755 1b-Per8q- *“• 

and hence the maximum shearing unit-stress is 1.79 times the average. 

Shearing Stress in Web of I-beam.—It is customary in struc¬ 
tural design to assume that the flanges of a channel-beam or an 
I-beam are effective in resisting bending but not in resisting shear, 
and the maximum shearing unit-stress in the beam is assumed to 
be equal to the average shearing unit-stress over the web only, 
regarded as extending the entire depth of the beam. Thus in the 
above problem 

Wav. m web = td = 0 62 X15 = 1074 lb' per sq* m' 

This method, therefore, gives only approximate results for the 
channel section, although in the case of an I-section the method 
yields results somewhat closer to those found by the correct 
method. 

The justification for assuming the shearing unit-stress in an 
I-beam to be distributed uniformly over the web considered 

to extend the entire depth of the 
beam may be found in a study 
of Fig. 116. In any section of an 
I-beam ss, according to equation 
(54), will be large where i is small, 
and small where t is large, the 

■sAa 

Fig. 116.—Distribution of shearing 
stress over section of I-beam. 

effect on s8 of the term yda be¬ f 
ing relatively small in the case 

of an I-section; further, ss will change abruptly where t changes 
abruptly. Hence, the horizontal (and vertical) shearing unit 
stress at a section in an I-beam varies as shown in Fig. 116(6), and 
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the total shearing stress (sa-da) on the elementary strips of the 
section (the total stress per unit of depth) is approximately con¬ 
stant for the whole depth of the section as shown in Fig. 116(c). 

Therefore, the method, stated above, for finding the shearing unit- 

stress in the web of an I-beam yields results that contain small 
errors. 

PROBLEMS 

116. A simple beam made of wood has a cross-section 6 in. wide by 8 in. 
deep. A concentrated load of 16,000 lb. acts at the mid-span section, and the 
span is 10 ft. (a) Find the maximum shearing unit-stress. (b) Find also 
the shearing unit-stress at a point 2 in. from the top of the beam in a section 
2 ft. from the left support. 

Ans. (a) ss = 250 lb. per sq. in. (6) ss = 188 lb. per sq. in. 

117. A simple timber beam has a hollow square cross-section; the outside 
dimensions are 8 in. by 8 in. and the inside dimensions are 4 in. by 4 in. The 
span of the beam is 10 ft. and the beam is subjected to a uniformly distributed 
load of 1500 lb. per ft. Find the maximum shearing unit-stress. Where in 
the beam does this stress occur ? 

Ans. ss = 328 lb. per sq. in. 

118. A Douglas fir beam (Fig. 117) having a cross-section 8 in. by 16 in. 
when tested as a simple beam with a span of 15 ft. by equal concentrated loads 
at the third points, failed by shear (as shown in Fig. 117) when the total load 
on the beam was 48,850 lb. Find the maximum shearing unit-stress in the 
beam when failure occurred. Ans. ss=2SS lb. per sq. in. 

Fig. 117.—Timber beam that failed by horizontal shear. 

119. Calculate the maximum shearing unit-stress in a 15-in. 60-lb. I-beam 
having a span of 12 ft. when loaded with a uniformly distributed load which 
causes a maximum tensile unit-stress of 16,000 lb. per sq. in. 

Ans. $s = 4800 lb. per sq. in. 
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120. A large Douglas-fir beam is to be designed to resist a concentrated 

load of 20,000 lb. at the center of the span. Use a working stress equal to 

one-third of the ultimate shearing unit-stress found in Problem 118 (288 lb. 

per sq. in.). If the span of the beam is 12it. and the width of the beam is to 

be 8 in. what should be the depth of the beam ? A working shearing stress 

of 100 lb. per sq. in. is frequently specified for large Douglas-fir beams, and 125 

lb. per sq. in. for dense pine. 

41. Stress Beyond Proportional Limit. Modulus of Rupture.— 
si 

As shown in Art. 34 the value of 5 in the flexure formula, M = —, is 
c 

the tensile or compressive unit-stress in the beam only when s does 
not exceed the 'proportional limit of the material. If the bending 
moment M causes a unit-stress greater than the proportional 
limit of the material the bending moment is still held in equilibrium 

Fig. 118.—Change in distribution of stress when proportional limit is 
exceeded. 

by the resisting moment but the resisting moment is not given by 
si 

the expression — since this expression was found by assuming that 

the unit-stress at any point varies directly as the distance of the 
point from the neutral axis; and this is true only when the maxi¬ 
mum unit-stress does not exceed the proportional limit. 

The distribution of stress on the cross-section of a beam when 
the maximum unit-stress on the section is less and greater than the 
proportional limit are shown in Figs. 118(a) and (6), respectively, 
and may be explained as follows: Experiments have shown that a 
plane section of a beam remains approximately plane after the beam 
is stressed even though the unit-stress exceeds the proportional 
limit of the material, and hence the unit-strain at any point is 
proportional to the distance of the point from the neutral axis in 
both beams of Fig. 118. In the beam that is stressed beyond the 
proportional limit (Fig. 1186) the unit-stress is not proportional 
to the unit-strain except near the neutral axis where the strain is 
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small, and hence the unit-stress does not vary directly as the dis¬ 

tance from the neutral axis except for short distances from the 

neutral axis; when the unit-stress on any fiber exceeds the propor¬ 

tional limit the unit-stress on that fiber increases at a less rate than 

does the strain; the curve showing the distribution of unit-stress 

on the section is the same as a portion of the stress-stress diagram 

for the material. 

Modulus of Rupture.—From Fig. 118 it is evident that with a 

given unit-stress in the outer fiber of the beam the resisting 

moment is larger when the unit-stress varies as shown in Fig. 118(6) 

than it would be if the unit-stress varied directly as the distance 

from the neutral axis. Therefore, the resisting moment in a beam 

when stressed to a given unit-stress beyond the proportional limit 

si 
is larger than that found from the expression by substituting the 

given unit-stress for s. Thus, if the ultimate strength of the 

si 
material is substituted for s in the flexure formula M = —} the 

c 

resulting value of M will be less than the maximum moment that 

the beam can resist. 

Tests of beams of various material have shown that the maxi¬ 

mum bending moment a beam can resist may be from 20 to 100 

per cent greater, depending on the material and the shape of cross- 

sections, than the value of M found from the flexure formula by 

substituting the ultimate strength of the material for s. 
If, then, the allowable or working unit-stress in a beam is taken 

to be some proportion (i, say) of the tensile or compressive 

ultimate strength (using the lesser value) the maximum bending 

moment that could be applied to the beam would be greater than 

five times the moment that would produce the working stress. For 

some materials (particularly brittle materials) a working unit- 

stress based on the ultimate strength of the material seems un¬ 

necessarily small and this fact is sometimes employed to justify 

larger working stresses in beams than is used for tension members. 

The value of s found from the flexure formula by substituting for 

M the value of the maximum bending moment that a beam re¬ 

sists when tested to rupture is called the modulus of rupture of 

the material in flexure. Thus, if it is denoted by sr, we have 

_Mmax.C 
Sr — j (55) 
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It should be noted that sr is not the unit-stress in the material 

caused by the bending moment Mm&x ; it is not the ultimate 

strength of the material. 

But although the modulus of rupture is not the actual maxi¬ 

mum unit-stress in the beam the relative values of the actual unit- 

stresses in two beams when stressed beyond the proportional 

limit may be found from the moduli of rupture provided that the 

two beams have cross-sections of the same shape; and only slight 

error will occur if the beams have cross-sections of different shapes 

provided that the cross-sections are symmetrical with respect to 

the neutral axis and that the stress-strain curves of the material 

in tension and compression have the same slopes (moduli of elasti¬ 

city in tension and compression are equal). If these two conditions 

are not satisfied the neutral axis shifts when the beam is stressed 

beyond the elastic limit and 

does not pass through the cen- 

troidal axis of the section. 

For example, in a beam 

with an unsymmetrical section 

(Fig. 119a), the most remote 

fibers on one side of the neu¬ 

tral axis will be stressed to 

their proportional limit be¬ 

fore those on the other side, 

as suggested by Fig. 119(6), and after the proportional limit 

has been exceeded, in order to keep the sum of the stresses on the 

fibers above the neutral axis equal to the sum of the stresses on the 

fibers below the neutral axis, the neutral axis must shift somewhat, 

as indicated in Fig. 119(c), thereby changing the values of c and I. 
Further, if the beam has a symmetrical section but is made of 

material, such as cast iron, whose fibers deform more in tension 

than in compression when subjected to a given unit-stress, the 

neutral axis must shift toward the compressive side of the beam in 

order to keep the sum of the tensile stresses equal to the sum of the 

compressive stressses, and this shifting of the neutral axis increases 

the resistance of the beam. 

42. Maximum Moment Due to Moving Loads.—Let several 

concentrated loads move or roll over a beam so that the distance 

between the loads remain constant, as for example, the wheel 

loads of a locomotive when moving on a bridge, and let it be re- 

Fig. 119.—Shifting of neutral axis 
in unsymmetrical section when 
proportional limit is exceeded. 
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quired to find the position of the loads when they cause the 

greatest bending moment on the beam. 

When the loads are in any given position on the beam the 

dangerous section must occur under one of the loads since the 

vertical shear will pass through zero under one of the loads, but 

although the bending moment is maximum at a section beneath 

a certain one of the loads (W2, say, Fig. 120) when the loads are 

in a given position, the bending moment at a section beneath 

the same load (W2) after the loads have been moved to another 

position may be greater or less than it was when the loads were in 

the previous position. 

In Fig. 120 let Wi, W2, W3, W± and W5 be concentrated loads 

that remain fixed distances W3 Z, YY 
w5 apart as they roll over the beam 

of span l, and let it be required 

to find the position of W2 such 

that thoben ding moment at a sec¬ 

tion beneath W2 will be greater 

than for any other positioning. 

The resultant of the loads is 

2 IF and it will be assumed to 

act at the distance e from IF2. 

of equilibrium we have, 
l—x 

Wi| 

W2 
k—a->k—b- 

a> cl) a) 

2W 
W4 

<-d- 

dm 

l — X~( 

Fig. 120.—Moving loads. 

Ri = 

Now from one of the equations 

-2 IF. 

Let x denote the distance of W2 from the left support, then the 

bending moment at the section beneath IF2 is 

l—x—e 
M3 -xVW-Wia. 

Now the value of x which will make Mx a maximum may be found 

by equating to zero the first derivative of Mx with respect to x. 
Thus, 

dMx l-2z-evw n 

■&“—SIF=0- 

Hence 
l—2x—e_ri 

l U’ 

l e 
X~2 2’ 

(56) 
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and hence M2 will be in its position of maximum moment when it is 
as far to one side of the center of the span as the resultant of all the 
loads on the span is to the other side of the center of the span. And 

the same statement will apply to each of the loads. 

In order to find the greatest bending moment to which the beam 

is subjected each load in turn must be put in its position of maxi¬ 

mum bending moment and the bending moment at the section 

beneath the load must be found; the greatest of these maximum 

moments is the greatest bending moment to which the beam is 

subjected. 

PROBLEM 

121. Two loads, 4000 lb. and 2000 lb., 6 ft. apart roll over a simple beam 

12 ft. long. Find the position of the loads to give the maximum bending 

moment and design a yellow-pine beam to carry this load, using a working 

stress of 1200 lb. per sq. in. Ans. 8 in. by 10 in. 

43. Assumptions and Limitations Involved in the Flexure 
si 

Formula.—In the derivation of the flexure formula, M=—, several 
c 

assumptions were made which impose limitations on the use of 

the formula. These assumptions and limitations may be sum¬ 

marized as follows: 

1. The unit-stress on any fiber of the beam is proportional to 

the unit-strain of the fiber, and hence the maximum fiber unit- 

stress in the beam does not exceed the proportional limit. This 

assumption of proportionality of stress and strain is a close approxi¬ 

mation to the law of behavior of most engineering materials except 

cast iron and concrete. And, for these materials the assumption 

does not as a rule introduce serious error in the flexure formula 

when the unit-stress in the beam is not greater than the usual 

working stress. 

2. The beam is composed of material for which the modulus of 

elasticity in tension is the same as that in compression. This 

assumption is a reasonably close approximation to the results of 

experiments for most engineering materials, except cast iron. 

And the error involved in the case of cast iron, although con¬ 

siderable, is not as a rule serious. The flexure formula does not, 

of course, apply directly to a beam made of two or more different 

materials such as a reinforced concrete beam. 

3. The axial strain (stretch or shortening) of any fiber in the 
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beam is proportional to the distance of the fiber from the neutral 

surface. This involves the further assumption that the effect of 

shearing strain on the axial strain is negligible; which, except for 

very short deep beams, introduces little error, particularly since 

the maximum longitudinal fiber stress occurs at the section on 

which the shearing stress is zero. 

4. The unit-strain as well as the total strain of any fiber of the 

beam is proportional to the distance of the fiber from the neutral 

axis. This assumption requires that all fibers shall have the same 

length before bending, that is, the beam shall be straight, and hence 

the flexure formula does not apply to curved beams. 

5. The loads act in one plane which contains the centroidal 

axis of the beam; the loads are perpendicular to the centroidal 

axis of the beam; and the neutral surface is perpendicular to the 

plane of the loads. These assumptions require that the plane of 

the loads shall contain an axis of symmetry of each cross-section 

(or, to be more exact, the plane of the loads shall contain a principal 

axis of inertia of each cross-section) in which case the neutral axis 

of any section is the other axis of symmetry (or the other principal 

axis of inertia of the cross-section). The flexure formula does not 

apply, therefore, to a beam loaded unsymmetrically. 

6. The proportions of the beam are such that the beam acts as 

a unit, that is, the beam fails (elastically) by bending and not by 

twisting, lateral collapse, local wrinkling, etc. For example, a 

rectangular beam \ in. wide by 12 in. deep would probably fail by 

twisting, and an I-beam having very wide and thin flanges would 

probably fail by local wrinkling of the flange, etc. 

Most of the steel, timber and other one-material beams that 

occur in structures and machines conform approximately to the 

conditions on which the flexure formula is based. Further, the 

flexure formula is applied frequently to beams (such as curved 

beams, unsymmetrically loaded beams, flat plates, etc.), that do 

not satisfy the conditions required to make its application valid; 

this practice is often justified if the amount of the error is known 

approximately, and if allowance is made for the error in some way 

as, for example, by reducing the working stress, or by introducing 

a correction factor in the formula. 



CHAPTER VI 

DEFLECTION OF STATICALLY DETERMINATE BEAMS 

(Double Integration Method x) 

44. Introduction.—Beams in structures and machines when 

resisting static loads must have stiffness as well as strength; that 

is, beams must resist the loads without permitting too great an 

elastic deflection.2 In fact stiffness is sometimes the governing 

factor in the design of the beam. 

Now the deflection of a beam depends on (1) the loads acting 

on the beam, (2) the stiffness of the material of which the beam is 

made, and (3) the dimensions of the beam. The stiffness of a 

material is measured by the modulus of elasticity of the material 

(Arts. 5 and 144). 

The purpose of this chapter is to determine in what way and 

to what extent the elastic deflection of a beam with two supports 

(statically determinate beam) depends on the loads, the stiffness 

of the material, and the dimensions of the beam, when the beam is 

loaded in various ways. To do this the general equation of the 

elastic curve of a beam will first be found. 

45. Elastic Curve Equation.—The elastic curve of a beam is the 

curve of the centroidal axis of a stressed beam, provided that 

the maximum unit-stress in the beam does not exceed the propor¬ 

tional limit of the material; since the elastic curve lies in the neutral 

surface of the beam it does not change its length as the beam is 

bent. 

The general equation of the elastic curve of a beam may be 

derived as follows: Fig. 121 represents a beam 3 bent by loads that 

1 See Chapter VIII for a discussion of the moment-area method of deter¬ 

mining deflections of beams. 

2 As discussed in Chapter XIII, the resistance of a member to impact 

loads may be decreased by making the member stiff. 

3 It is assumed that the beam is straight before the loads are applied and 

that the plane of the loads contains an axis of symmetry of each cross-section 

120 
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cause a maximum fiber stress less than the proportional limit of the 

material (the deflection of the beam is exaggerated in the figure). 

As discussed in Art. 34, when a straight beam is bent the strains 

of the fibers are proportional to the distances of the fibers from the 

neutral surface. Thus in Fig. 121 GH and E'F' are any two sec¬ 

tions that were parallel before the beam was bent; the distance 

A B between the two parallel sections is assumed to be a dif¬ 

ferential length and will be denoted by dl, where l is the length of 

the elastic curve. By drawing EF through B parallel to GH 
(and hence parallel to the original position of E'F') it is evident 

that the upper fiber HF has shortened the amount FF' and the 

bottom fiber has elongated the amount EE', denoted by de in 

Fig. 121, and the strains of the other fibers are proportional to the 

distances of the fibers from the neutral surface. Further, the 

unit-strain, e, of the bottom fiber is 

de 

of the beam so that the neutral plane is perpendicular to the plane of loads 

(see Art. 43). Further, the beam is assumed to be subjected to pure bending; 

that is, the deflection resulting from shearing deformation is assumed to be 

negligible (see Art. 43). 
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Now, the sectors OAB and BEE' are similar, and hence 

BE = EE 
OA~AB 

But OA is the radius of curvature of the elastic curve at the 

point A, denoted by p, and BE is the distance from the neutral 

surface to the fiber whose strain is de, denoted by c as in Art. 34. 

Hence 
c de c 

(57) 

But c and e are related to the external forces, the stiffness of 

the material, and the dimensions of the beam according to the 

following equations: 

M = ~ (Art. 34) and E = S- (Art. 5). 

Therefore, equation (57) may be written: 

P = 
El 
M 

or M — 
El 

. (58) 

in which p is the radius of curvature of the elastic curve at a sec¬ 

tion for which the bending moment is ilf; jB7 is the modulus of 

elasticity of the material, and I is the moment of inertia of the 

cross-section of the beam about the neutral axis; if E is expressed 

in pounds per square inch, I in inches4 and p in inches, M will be 

expressed in pound-inches. 

It should be noted from the above equation that if a beam of 

constant cross-section is so loaded that the bending moment M is 

constant over a portion of the beam, the radius of curvature of the 

elastic curve of this portion will also be constant (since E and I 
are constant), and hence the elastic curve for this portion is an 

arc of a circle. Conversely, if a beam is bent in an arc of a circle 

the bending moments for all sections of the beam are equal. 

Further, the above equation also shows that when M is equal 

to zero, p is equal to infinity; thus, at the inflection point (M = 0, 

Art. 38) the center of curvature is at an infinite distance from the 

beam. 
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PROBLEMS 

122. A band saw 1/20 in. thick by 1 in. wide is in contact with the circum¬ 

ference of a wheel having a diameter of 50 in. Find the bending moment to 
which the saw is subjected and the unit-stress in the outer fibers. 

Ans. s = 30,000 lb. per sq. in. 

123. A steel rod is subjected to 

bending couples at its ends as shown 
in Fig. 122. If the moment of each 

couple is 2400 lb.ft. and the cross- 
section of the rod is | in. by 2 in., 
with the 2-in. dimension in the plane 
of the couple, find the radius of Fig. 122—Beam subjected to bending 

curvature of the rod. couples. 

124. Find the radius of curvature at the section AB of the beam de¬ 
scribed in Problem 73, assuming the beam to be made of yellow pine. 

Elastic Curve Equation Expressed, in Rectangular Coordinates. 

The expression for the radius of curvature, p, is (see any text¬ 

book on calculus) 

Now for beams that are straight before being bent and that 

are not deflected more than is usual in structural and machine 

dy 
members, the value of the slope is always small 4 compared 

/ dy\ 2 
with unity, and hence may be neglected without intro¬ 

ducing serious error. Thus, the above expression for p becomes 

P 
1 

d2y 

dx2 

(60) 

El 
Therefore, the equation M = — may be written 

P 

M=±EI 
d\ 
dx2’ 

(61) 

4 For example, the tangent to the elastic curve would probably never be 

as large as one part in 20 and hence the error in equation (60) would not 

exceed about one part in 10,000. 
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which is the general equation of the elastic curve of a beam. In 

this equation M is the bending moment at the section whose dis¬ 

tance from the origin of the coordinates is x, and y is the deflec¬ 

tion of the elastic curve at the same section. The sign to be 

selected for the right-hand member of the equation is discussed 

below. 

In order to determine the value of the deflection y for any given 

value of x, M is expressed in terms of x and the differential equation 

is then integrated twice; the equation thus found, of course, will 

depend on the type of beam (simple, cantilever, etc.) and the type 

of loading (concentrated, uniformly distributed, etc.). The equa¬ 

tions of the elastic curves and the maximum deflections of beams 

of various types are found in Art. 46 to 50. 
py t 

Signs of M and —In using the elastic curve equation, 

M 
(py 

±EI-~> in this and the following chapters, it is important 

d2y 
to understand the significance of the signs of M and E and I 

are essentially positive and may be regarded merely as magni¬ 

tudes. Now the sign of M has already been discussed (Art. 36); 

it is positive for a horizontal beam when it produces tensile stress 

in the bottom fibers of the beam, or when it causes the center of 

curvature to lie above the beam, and is negative when it causes 

compressive stress on the bottom fibers, etc. The sign of 
d^y 
dx2' 

however, depends on the choice of the positive direction of the 

Y 

Fig. 123.—Effect of direction of axes on sign of —. 
dx2 

axes. For example, Fig. 123a represents a horizontal simple 

beam subjected to a positive bending moment. Let the origin 

of axes be chosen at the left end of the beam and let the positive 

directions for the x and y axes be to the right and upwards, 

respectively. 
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dv 
Now the slope at a point A on the curve is negative whereas 

dv 
at a point B the slope is positive, and thus as x increases ~ 

increases. Therefore, the rate of change of with respect to x 

d2y\ 
that is, ^“2 ) is positive, and since M is also positive, the equation 

may be written 

.(62) 

If, however, the positive direction of the y-axis were chosen 

downward as shown in Fig. 123(6), the slope at A would be POSI¬ 

ES?/ 
tive and would decrease as x increases; thus would be negative. 

But M is positive and the right side of the equation must, then, 

also be posLi e which requires that the equation shall be written 

M = — El 
dPy 
dx2’ 

(63) 

If, then, the z-axis is chosen as in Fig. 123 and the positive 

direction of the y-axis is chosen opposite to the direction of the 

d2y 
deflection, equation (62) should be used since the sign of will 

be the same as that of M, and if the positive direction of the 

2/-axis is chosen opposite to the direction of the deflection equation 

d2y 
(63) should be used, since the sign of will opposite to that 

of M. 

46. Deflection of Simple Beam, Uniform Load.—Let it be 

required to determine the equation of the elastic curve and the 

maximum deflection of a simple beam, having a span of Z ft., when 

subjected to a uniformly distributed load of w lb. per ft. (Fig. 

124); the known quantities in addition to w and l are the modulus 

of elasticity E and the moment of interia, 7, of the cross-section of 

the beam. 

Let the i/-axis be chosen positive upward as shown in Fig. 124. 

d2y 
The general elastic curve equation, then, is F7^| = 717. But 

il7 varies with x and may be expressed in terms of x; thus, the 
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bending, moment at any section whose distance from the left 

support is x, is 

, _ x wl wx2 
Mx = Rix—wx-2 = ~2X—2 * 

Substituting this expression for M in the general elastic 

equation we have 

r^Td2y wl wx2 
EId=2X—2 

curve 

(64) 

By integrating we obtain, 

in which c\ is a constant of integration. The value of a constant 

in an equation may be determined by substituting a pair of values 

of the variables; in this equation the variables are the slope 

of the elastic curve and the distance x. From inspection, 

when 

By substituting this pair of values in the above equation the value 

of Ci is found. Thus 

wl3 wl3 

Cl=-16“+48 

The above equation, then, becomes, 

.' <*> 



DEFLECTION OF SIMPLE BEAM, CONCENTRATED LOAD 127 

By integrating this equation and evaluating the constant of 

integration, the equation expressing the relation between y and 

x is found. Thus, 

EIy = 
wlx3 
~w 

wx4 

24 

wl3x 
"24" 

+c2. 

From inspection, when x = 0, y = 0, and hence c2 = 0. 

Therefore, the equation of the elastic curve of a simple beam 

subjected to a uniformly distributed load is 

Ely 
wlx3 wx4 wl3x 
~12 15T 24"* 

(66) 

Maximum Deflection.—Now the maximum deflection, A, 

occurs at the mid-span, that is, y in the above equation becomes 

A when x is equal to 1/2. Hence the maximum deflection is 

A = 

A = 

1 /wP_wl4: wP\ 
F7V96“384_48;‘ 

5 wP_ 5 Wl3 
384 El 384 El * * 

(67) 

The minus sign shows that the deflection is opposite to the 

positive direction of the y-scxis. If the total load W is expressed 

in pounds, l in inches, E in pounds per square inch, and I in inches4, 

A will be expressed in inches. 

47. Deflection of Simple 
Beam, Concentrated Load at 
Mid-span.—Let the axes be 

chosen as shown in Fig. 125. 

For any section in the left half 

of the beam, 

M = R\x = \Px. 

Hence 

Fig. 125.—Deflection of simple beam 

subjected to concentrated load at 

mid-span. 

(68) 

By integrating we obtain 

Px2 
ei£=~t+ci; 

when x = 1, = and hence Ci=—jg-. 
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Thus, 

tjldx 4 16 

By integrating again we obtain 

EIy = 
Px3 PI2 , 
12 16X+C2’ 

(69) 

• (70) 

when x = 0, y = 0, and hence 5 C2 = 0. 
Therefore, the equation of the elastic curve of the left half of 

the beam is 

Px3 Pl2x 

EIy= l2- W 
(71) 

Since the maximum deflection, A, occurs at the mid-span, that 

is, when x = L the maximum deflection is 
£ 

A“ 96 16 48 EP 

The minus sign shows that the deflection is opposite to the 
positive direction of the F-axis. 

Equation (71) is also the equation of the elastic curve of the 
right half of the beam if the origin of axes is taken at the right 
end of the beam and the positive direction of x is to the left. 

PROBLEMS FOR ARTICLES 46 AND 47 

125. A simple beam 12 ft. long is subjected to a uniformly distributed 

load of 400 lb. per ft. The cross-section of the beam is 4 in. wide by 8 in. 
deep. The beam is made of oak having a modulus of elasticity of 2,000,000 

lb. per sq. in. and a proportional limit of 3500 lb. per sq. in. It is specified 
that the maximum fiber unit-stress shall not exceed 2000 lb. per sq. in. and 

that the maximum deflection shall not exceed -g-jj-Q of the span. Are the 
requirements satisfied? 

126. How much will a 12-in. 55-lb. I-beam deflect when stressed to its 
porportional limit of 40,000 lb. per sq. in. by a concentrated load at the mid¬ 

span if the span is 20 ft.? Ans. A = 1.07 in. 

5. It should be noted that although the right support does not deflect, the 

value of y in equation (70) is not zero when x is equal to l, since 1/2 is the great¬ 

est value x can have in the equation; for values of x greater than 1/2 the expres¬ 
sion for M is not \Px. 
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127. A cylindrical steel shaft 4 in. in diameter is used as a simple beam on 

a span of 12 ft. The beam is subjected to a uniformly distributed load of 200 

lb. per ft. and a concentrated load of P lb. at the center of the span. If the 

maximum deflection of the beam must not exceed 0.40 in. and the maximum 

fiber unit-stress must not exceed 20,000 lb. per sq. in., find the maximum 

value of P. Ans. P—2290 lb. 

128. In Art. 47 use for M the bending moment for any section to the 

right of the load and show that the magnitude of the maximum deflection is 

PP 

48 El’ 

48. Deflection of Cantilever Beam, Uniform Load.—Let the 
uniformly distributed load be w lb. per ft. and let the axes be 
chosen as in Fig. 126. 

Y 
W lb. per ft. 

X ^-rrTTTTTTI 1 1 1 1 II 1 111 

curve 

L---1-> 

Fig. 126.—Deflection of cantilever beam subjected to uniform load. 

Since M is negative the elastic curve of the beam is 

W1d2y __M__wx2 
Er&p—M- 2. 

(72) 

By integrating and determining constants as in the preceding 

articles we have 

when x = l, ~ = 0; therefore, a = 

jpjdy wx3 wl3 

EIdi~ ~6 6 ’ 

T7T wx* wl3 . 
EIy=—2j~+-g-3+C2, 

when x = l,y = 0; therefore, C2= — 

The elastic curve equation then is 

pr,,_ wxi4-wl3x--WU 
EIV-- 24 + 6 8 ' 

(73) 

. (74) 
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Now the maximum value of y in the above equation occurs when 

x is equal to 0. Hence the maximum deflection is 

1 wl4 _ 1 wl3 
8 EI~~8ET 

(75) 

PROBLEMS 

129. Show that the magnitude of the maximum deflection of a cantilever 
beam when subjected to a concentrated load P at its free end is 

1 PI* 

A“3 El* 

130. A 15-in. 55-lb. I-beam is used as a cantilever beam. The length of 
the cantilever is 10 ft. and the beam is subjected to a uniformly distributed 
load. Find the deflection of the free end of the beam when the maximum 
fiber unit-stress in the beam is 16,000 lb. per sq. in.; neglect the weight of the 
beam. Ans. A = 0.256 in. 

131. A piece of pine having a cross-section 2 in. wide by 4 in. deep is used 
as a cantilever beam to resist a concentrated load P at the free end. The 
beam has a free length of 4 ft. It is required that the maximum deflection 
(see Problem 129) shall not exceed 0.5 in. and that the maximum fiber unit- 
stress shall not exceed 2000 lb. per sq. in. What is the maximum value of 
P? Neglect the weight of the beam. The modulus of elasticity of the pine 
may be assumed to be 1,500,000 lb. per sq. in. 

Beam, Uniform Load.—Fig. 

127(a) represents a beam 

that overhangs the same 
amount at each end and is 

subjected t3 a uniformly- 
distributed load of w lb. per 

ft. over the entire length of 

the beam. Let it be required 

to find the equation of the 

elastic curve of the central 
portion of the beam, and the 

maximum deflection of the 
beam. 

Let the axes be chosen as shown in Fig. 127(6). The reaction 

Ri is found by applying one of the equations of equilibrium as 
follows: 

Ri — \wl-\-wa. 

49. Deflection of Overhanging 

W lb. per ft. 

AT'1 
. ,. Elastic curve 
(6) 

Fig. 127.—Deflection of overhanging 
beam. 
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The bending moment at any section between B and C (Fig. 
127a) is 

M,=flia:-w(q+x)2 

= %w(a-\-l)x—\w{a+x)2.(76) 

For all points between B and C: 

EI<^= -\wx2+\w(l-a)x-\wa?.(77) 

By integrating this equation twice and making use of the 
following conditions, 

^| = 0 when x = y = 0 when x = 0; y = ym3jX = A when z = 

the elastic curve equation of the central portion of the beam is 
found to be 

EIy= — -^wx^+^wlx3 —\wa2x2 —^wPx+waHx; . (78) 

and the maximum deflection is found to be 

5 wl4 3 wl2a2 

“384 #T-T6 “E7~ 
(79) 

50. Deflection of Simple Beam, Concentrated Load Not at 
Mid-span.—If the concentrated load P is not at the mid-span the 
expressions for M on opposite sides of the load are different as is 
also the case when the load acts at the mid-span (see Art. 47), and 
hence there are two elastic curves which have different equations. 
But, if the load does not act at the mid-span the constants of inte¬ 
gration cannot be determined as in Art. 47; they are found by 
making use of the fact that the two elastic curves have a common 
tangent and a common 
ordinate under the load. 
Further, the maximum 
deflection of the beam is q 
the maximum value of 
y in the equation of only 
one of the curves. 

Fig. 128 represents pIG 128.—Deflection of simple beam; concen- 

a simple beam subject- trated load at any point, 

ed to a concentrated 
load P at the distance a from the left support and b from the right 
support, a being greater than b. Let it be required to find the 
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equation of the elastic curve of the left portion of the beam and the 
maximum deflection of the beam. Let the axes be chosen as 
shown in Fig. 128. 

The bending moment at any section to the left of P is 

M = R\X= -yX,.(80) 

in which x may have any value from 0 to a. And the moment 
at any section to the right of P is 

M = ^x—P(x — a),.(81) 

in which x can not be less than a nor greater than l. 
For all points to the left For all points to the right of the 

of the load: load: 

VTd2y Pbx 
EIdx^=~r ■ ■ 

dy_Pbx2 
EIdi~^T+Cl- 

(82) 

(84) 

E1%=Tx-p^~a)- 
(83) 

„ jdy Pb 2 P{x—a)2, 
EITx=2lX-—'(85) 

And since the curves have a common tangent under the load, 
dy 

when x is made equal to a in both (84) and (85) the value of ~ 

in (84) is equal to in (85). Thus 

Pba2 , Pba2 P(a—a)2 . 
~W+Cl = ^l-2-+C3’ 

whence, 
Ci = C3. 

Now by substituting Ci for c3 in (85) and by integrating (84) 
and (85) there is found: 

Phr3 
EIy = —Qj—bci*+c2. (86) 

Pbx3 P{x—a)3 
Ely—^--g-bcix+c4. (87) 

when x = 0, y = 0, 

hence, C2 = 0. 

Since the curves have a common ordinate under the load, when 
x = a in (86) and (87) the values of y in these equations are equal, 
and hence 

Pba3 . Pba3 
61 

-+cia = - 
61 

■+Cia+C4. 

C4 = 0. 
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Now when x = l in (87), y = 0, and hence 

Pbl2 , P(l-a)*=_Pb 

61 
~ «2~b2). (88) 

61 1 6Z 

Substituting this value of c\ in (86) the equation of the elastic 

curve of the left portion of the beam is found to be 

Pbx3 Pb(l2—b2)x 
Ely 

61 6Z 

dy 

(89) 

The value of x that makes ^ equal to zero is the value of x 

that makes y in (89) a maximum, and this value of y is the value 

of the maximum deflection. But the value of ^ is given by (84) 
ax 

and hence equating (84) to zero we have 

2_l2 — b2_a(a+26) 

* 3 3 ' 

By substituting this value of x in (89) the maximum deflection 

is found to be 

Pb(l2-b2)Vd(l2-b2) 
A= — 

A= — 

27 Ell 

Pba{a-\-2b) V3a (a+26) 

27Wl 

(90) 

(91) 

If in the above expression a and b are each made equal to 

1 PI3 
that is, if P acts at the mid-span the value of A is -rpr as was 

’ ^ 48 El 
found in Art. 47. 

PROBLEMS 

132. Derive the equations of the elastic curves of a simple beam of length 
l when loaded with two equal concentrated loads, PP, each load being at a 
distance of \l from a support. Also find the maximum deflection of the beam. 
Select the origin of axes at the left end of the beam and the positive direction 
of the x and y axes to the right and upwards, respectively. 

Px3 3 
Ely ——-— Pl2x for the left portion, 

6 32 

Plx2 Plx PI3 
Ans. Ely =—--f°r central portion, 

8 8 o84 

A= - 
U_ PP 

384 El' 

Note.—The elastic curves of the left and central portions of the beam have 
a common tangent and a common ordinate under the left load. 
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133. A 9-in. 30-lb. I-beam rests on two supports 14 ft. apart and resists a 

concentrated load of 15,000 lb. at a distance of 5 ft. from the left support. 

Determine whether the following requirements are satisfied. 

(а) Fiber unit-stress not to exceed 16,000 lb. per sq. in. 

(б) Maximum deflect not to exceed g-g-g of the span. 

Deflection of Beam Due to Shear 

The deflection of a beam due to the shearing stresses in the 
beam was assumed, in the preceding discussions, to be negligible. 

In short deep beams, however, the 
deflection due to shear may require 
consideration. An approximate value 
for the deflection due to the shear¬ 
ing stresses may be found as fol¬ 

lows: 
The shearing deformation dys of 

a small block, of length dx, in the 
beam (Fig. 129) is 

fldx 

BpW 
Ss  

t 1 

Fig. 129.—Deflection of beam 

due to shear. 

dys = esdx = ~dx, 

in which ss is the shearing unit-stress on the face of the block; 
the deflection of a fiber of length x (Fig. 129) is 

.(92) ys = 4rf s8dx. 

If ss is constant throughout the length of all the fibers the deflec¬ 
tion of the beam is 

sRx 

y‘ e: 
(93) 

In general, however, varies over the section, but if an average 
value of ss (see Art. 40) is used in equation (93), an approximate 
value of the deflection due to shear may be found which may be 
helpful in estimating to what extent the shearing stresses con¬ 
tribute to the deflection of a beam. 

A more exact analysis may be made by substituting for ss 
in equation (92) the value given by equation 53 of Art. 40. 

PROBLEM 

134. Since Vdx = dMx (see Arts. 36 and 37) and the average shearing unit- 

stress ss=V/a show that equation (93) may be written 

Mx 

Vs~ aEg 

when the vertical shear, V, is constant over the length x. 



CHAPTER VII 

STATICALLY INDETERMINATE BEAMS 

51. Introduction.—In the preceding two chapters the beams 
considered were held in quilibrium by external forces that formed 
a system of parallel forces in a plane, and the reactions of the sup¬ 
ports were found by applying the two equations of equilibrium for 
such a force system; since there were not more than two supports 
and hence not more than two unknown external forces acting on 
the beam, the two equations of equilibrium were sufficient to deter¬ 
mine all the unknown external forces. In other words, the force 
system acting on the simple, cantilever, and overhanging beams 
considered in the preceding chapters were statically determinate. 

On the other hand, although fixed-ended beams and continuous 
beams are held in equilibrium by parallel forces in a plane, yet the 
reactions of the supports cannot be found from the two equations 
of equilibrium alone, since the number of unknown reactions is 
greater than two. Such beams are said to be statically indeter¬ 
minate, and in finding the reactions use is made of the relation 
between the external forces and the internal effects of those forces 
(as expressed by the elastic curve equation) in addition to the 
relations between the external forces alone (as expressed by the 
equations of equilibrium). 

Method of Procedure.—The method of obtaining equations 
that involve the unknown reactions, in addition to the two equa¬ 
tions of equilibrium, is as follows: 

In the elastic curve equation, M=±EI 
d?y 
dx2’ 

the expression 

for M will contain some of the unknown reactions (forces and 
couples) acting on the beam, and after the elastic curve equation 
is integrated, a constant of integration being added with each 
integration, the unknown reactions and constants of integration 
are determined by substituting in the equations as many pairs of 
values of the variables as there are unknown reactions and con- 

135 



136 STATICALLY INDETERMINATE BEAMS 

stants of integration; the pairs of values of the variables are found 
from the physical conditions that the beam satisfies. The remain¬ 
ing unknown forces (that did not occur in the expression for M) 
may then, as a rule, be found from the two equations of equi¬ 
librium. 

Thus, the equation of the elastic curve may be used for two 
different purposes: (1) To find the deflection of a beam when all 

the forces acting on the beam 
are known, as discussed in 
Chapter VI, and (2) to deter¬ 
mine reactions of supports 
when they cannot be found 
from the equations of equilib¬ 
rium alone, as is discussed 
in this chapter in connection 
with fixed-ended and contin¬ 
uous beams; the use of the 
elastic curve equation for the 
latter purpose is of great im¬ 
portance, since it makes pos¬ 
sible the determination of the 
stresses in statically indetermi¬ 
nate flexural members. 

52. Beam Fixed at One 
End, Supported at Other End; 
Uniform Load.—Fig. 130(a) 
represents such a beam, the 
tangent line to the elastic 
curve at the wall being hori¬ 
zontal; the length of span is 
l, and the load per unit of 
length is w. As shown in 
Fig. 130(5), the beam is held 
in equilibrium by parallel 
forces of which all three reac¬ 
tions, Ri, R2 and R3 are un¬ 

known. Thus it is necessary, as explained in the preceding 
article, to use the elastic curve equation in addition to the two 
equations of equilibrium in order to determine the reactions. 

Now the forces R2 and R3 are equivalent to an upward force 

Fig. 130/—Beam fixed at one end, sup¬ 

ported at other end; load uniformly 

distributed. 
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and a bending couple, and since we are concerned mainly with the 
part of the beam outside the wall, it is convenient to assume that 
the beam is cut off even with the face of the wall at the section A A 
(Fig. 1306) and that R2 and Rs are replaced by the forces 
(stresses) which they cause on this section; namely, the upward 
shearing force Fo and the bending couple Mo as shown in 
Fig. 130(c). 

The three reactions to be found, then, are Ri, Vo and M0. 
The value of Ah may be found from the elastic curve equation, and 
Vo and Mo may then be found from the two equations of equilib¬ 
rium as follows: 

If axes are chosen as shown in Fig. 130(c) the elastic curve 
equation (see Art. 45) is 

EIj£i = M = Rlx--~.(94) 

Integrating, we have 

WTdy Rix2 wx3 
mTx=—--<T+Cu 

dy 
when x = l, ~r = 0 and hence, 

ax 

Therefore, 

Ril2 . wl3 

-njdy _R\x2 wx3 Ril2 wl3 
Mdi~ 2~ ~2 ^~6~' 

Integrating again, we obtain, 

„T Rix3 wx4 R\l2 wl3 2 

EIV = -q— 2i—2-*+T*+A • 

(95) 

(96) 

when x = 0, y = 0 and hence, C2 = 0; 

when x = l, y = 0 and hence, 

Rxl3 wl4 Ril3 wl4 
° 6 24 2 + 6 ’ 

Therefore, 
Ri = %wl. 

Now from the two equations of equilibrium (2F = 0 and 2ikf = 0), 
Vo and Mo may be found. Thus, 

2F = %wl+Vo—wl = Q. 
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Hence, 

Vo = f wl 

Hence, 
Mo= — \wl2. 

It will be noted that the moment at the wall, then, is a negative 

moment, as shown in Fig. 130(c), the magnitude of which is \wl2. 
Shear and Moment Diagrams. Maximum Positive Moment.— 

The vertical shear for a section at distance x from the left support 

is 
Vx = i wl—wx, 

and this equation shows that the shear is zero when x = fl; the 

shear diagram is shown in Fig. 130(d). 

The bending moment for a section at the distance x from the 

left support is 

Mx = lwlx—wx.(97) 

The value of the bending moment is a maximum at the section 

for which the vertical shear is zero (Art. 35), and hence the maxi¬ 

mum positive bending moment is 

Pos. Mmax = %wl-U-w-%l-i 11 

xfs^2* 

The inflexion point is found by equating Mx to zero. Thus, 

whence, 

3 7 WX n 
f wlx—2~ = 0, 

x = U. 

The bending moment diagram is shown in Fig. 130(d). 

Since the maximum negative moment { — \wl2), which occurs 

at the wall, is greater than the maximum positive moment, the 

greatest unit-stress in this type of beam occurs at the wall and 

may be found from the flexure formula (m~— ) by using \wl2 
for M. ' c' 

Maximum Deflection.—Equation (96) is the equation of the 

elastic curve, the value of C2 being zero and the value of Ri being 

|wl. Thus, the elastic curve equation becomes, 

24Ely=%wl(x3—312) —w(x*—413x). 
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Further, the maximum deflection is found to occur at the distance 

x = 0.42152 from the left support and its value is 

711/4 

A = 0.0054^. 

As indicated in Fig. 130(e), the beam may be considered to be a 

combination of a simple beam having a span Jl and a cantilever of 

length Jl. That is, the beam may be sawed in two at the section 

where the moment is zero (inflection point), the shear V' at this 

section acting as the reaction for the simple beam and as a con¬ 

centrated load on the cantilever. 

Alternative Method.—If the left support were removed the beam 

would become a cantilever beam and the uniform load on the 

1 wP 
beam would cause the free end to deflect a distance 3 ^ (Art. 48). 

o El 
But since the end does not deflect, the reaction R\ must be a force 

which if acting alone on the end of the cantilever would cause an 

upward deflection equal to 
O El 

Now the deflection due to a. 

1 PI3 
concentrated load P on the free end of a cantilever is ^ 

6 hi 
(Prob. 129). Hence, 

Therefore, 

1 Ril3 

3 El 
1 wP 
8 W 

Ri = Iwl. 

This method does not, however, avoid the use of the elastic 

curve equation since the elastic curve equation was used in deter¬ 

mining the expressions used for the deflections. 

PROBLEMS 

134. Derive the expressions for the maximum positive moment, the 

maximum negative moment, and the maximum deflection, as given above, 

by considering the beam to be composed of two beams as shown in Fig. 130(e). 

135. A steel I-beam is fixed at one end and supported at the other end, the 

length of span being 10 ft. It is loaded with a uniformly distributed load of 

100 lb. per ft. Find (a) the point of inflection, (6) the maximum negative 

moment, (c) the maximum positive moment, (d) the section modulus of the 

beam using a working unit-stress of 16,000 lb. per sq. in. Also draw to scale- 

the moment and shear diagrams. 

Ans. (d) section modulus = 0.937 in.3 if weight of beam is neglected. 
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136. A timber beam 6 in. wide and 12 in. deep is used on a span of 16 ft. 
The beam is fixed at one end and supported at the other and is subjected to a 
uniformly distributed load. If the working unit-stress is 800 lb. per sq. in., 
what is the maximum load per foot of length the beam can resist. 

137. A 10-in. 25-lb. I-beam is supported at the left end and partially 
restrained in a wall at the right end, the clear span being 15 ft. The load 
including the weight of the beam is 1200 lb. per ft., and the reaction at the left 
end is wl. Find the fiber unit-stresses in the beam due to the negative and 
positive bending moments and indicate on a sketch where these stresses occur. 

53. Beam Fixed at Both Ends; Uniform Load.—Fig. 131(a) 

represents such a beam, the length of span being l and the load 

Fig. 131.—Beam fixed at both ends; 

load uniformly distributed. 

per unit of length, w. Fig. 

131(h) shows that the beam 

is held in equilibrium by a 

parallel force system in which 

there are four reactions, Ri, 
R2, R3 and R±. But, as in 

the preceding article, it is 

desirable to replace these 

reactions by the shears and 

moments at the ends of the 

beams as indicated in Fig. 

131(c), and hence the four 

unknown reactions are V\, 
V2, Mi and M2. Now from 

symmetry1 and from the 

equations of equilibrium we 

have: 

Mi=M2 and Vi = V2=iwl, 

and hence only one unknown 

(namely, M1 or M2) need 

be found from the elastic 

curve equation. The value 

of Mi may be found as fol¬ 

lows: 

xIf the condition of symmetry were not employed, two unknowns (7i 
and Mi) would be found from the elastic curve equation, since only two equa¬ 
tions of equilibrium are available. 
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If axes are chosen as shown in Fig. 131(c) the elastic curve equa¬ 
tion is (see Art. 45) 

EI^ = M = M1 + V1x-^-- ..... (98) 

Mi will be considered to be unknown both in sign and in magni¬ 
tude. Integrating, we have 

cLy 
^ = 0 when x = 0, hence C\ = 0, 

~ = 0 when x = l, hence 
ax 

n i\/r 7 I i r ^ 
0—^-g-. 

Therefore, 

Mx=-^wP. 

Thus the moment at each wall is negative and equal to -fawl2. 

Shear and Moment Diagrams. Maximum Positive Moment.— 
The vertical shear for a section at the distance x from the left 
support is 

Vx=iwl—wx; 

this is equal to zero when x = ^l, that is, at the mid-span. The 
shear diagram is shown in Fig. 131(d). 

The bending moment about a section at a distance x from the 
left support is 

. Mx=Mi + Vix-~ 

= -^wP+iwlx-W£. 

But the bending moment is maximum at the section for which the 
vertical shear is zero and hence, 

l wl2 
Maximum Positive Moment = —-^wl2—~- Z o 

1 79 
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Thus, the bending moment at the center of the beam is only one- 

half as large as that at the ends of the beam. 
The points of inflection are found by equating the expression 

for the bending moment, Mx, to zero. Thus 

Mx= —&wl2+hwlx-^- = 0, 

whence 
z = iZ(l±|V3). 

The bending moment diagram is shown in Fig. 131(d). 
Maximum Deflection.—The expression for the maximum 

deflection may be found from the elastic curve equation; if the 
axes are chosen as in Fig. 131(c), the elastic curve equation is, 

EIjxi=MX= -&wP+hdx--£. 

By integrating this equation twice, determining constants of 
integration, etc., the value of the maximum deflection is found to 
be, 

A — — * w^ 
384 ffl’ 

which is only one-fifth as large as that of a similarly loaded simple 
beam (see Art. 46). 

It is sometimes convenient to consider the beam in question to 
be made up of two cantilevers and a simple beam as indicated in 
Fig. 131(e). The shears V' at the points of inflection are 

V' = Vi-wx 

= \wl—— }a/3) . 

PROBLEMS 

138. Select a steel I-beam for a span of 12 ft. if the beam is to be fixed at 
both ends and subjected to a uniformly distributed load of 200 lb. per ft. 
Use a working unit-stress of 18,000 lb. per sq. in. 

Arts. 3-in. 5Hb. I-beam. 

139. Compare the maximum deflections of a timber beam having both 

ends fixed and a steel beam having simply supported ends. The beams are 
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subjected to the same uniformly distributed load, and have the same span and 

dimensions. 

140. A beam with a clear span of 16 ft. is partially fixed at each end, the 

negative moment at each end being wl2- The load is uniformly distrib¬ 

uted and equal to 1000 lb. per ft., including the weight of the beam. Find the 

size of the lightest steel I-beam that may be used without having the fiber 

unit-stress exceed 16,000 lb. per sq. in. 

141. One of the beams in a theater balcony is 18 feet long. The left end 

is built into the wall in such a manner that the restraint produces a negative 

bending moment, M0, at that end equal to 12,000 ft.-lb., and the beam rests 

on a support 3 feet from the right end. The beam is loaded with a uniformly 

distributed load of 600 lb. per ft. Determine the reactions on the beam, con¬ 

struct a shear diagram, and determine the value of the maximum positive 

bending moment. 

54. Beam Fixed at Both Ends; Concentrated Load at Mid- 
span.—Fig. 132(a) represents such a beam, the length of span 
being l and the load P. The 
reactions of the wall may be 
replaced by the shears Vi and 
V2 and the moments Mi and 
M2 (Fig. 1326) as was done 
in the preceding articles. 
These four unknown reactions 
may be found by use of the 
conditions of symmetry and 
equilibrium, and of the equa¬ 
tion of the elastic curve of 
the left half of the beam. 
Thus, from the ‘ conditions of 
symmetry and equilibrium we 
have, 

Mi=M2 and Vi = V2 = JP. 

,-Shear curve 

& 

^Jr 
s 

urve^\ " As 

K-44 

P= P 

,Vswl 
-Moment 

curve 

(<0 

-Sp- § 

£ 

Fig. 132.—Beam fixed at both ends: 

concentrated load at mid-span. 

Now Mi may be found from 
the elastic curve equation; if axes are chosen as shown in Fig. 
132(6) the equation of the elastic curve of the left half of the 

beam is 

El 
d?y 
dx2 

= M1+Vix=M1+iPx. . . . (99) 
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Integrating, we have 

EIi-M„+^+a (100) 

dx 2 

Therefore 

M>—5«- 

Thus the bending moment at each end of the beam is negative and 

equal to \Pl. 
The maximum positive moment occurs at the center where the 

vertical shear is zero (see Fig. 132c for shear diagram) and is 

Thus the maximum positive moment is numerically equal to the 

maximum negative moment, and hence the maximum fiber unit- 

stresses at the wall and mid-span sections are equal, if the beam 

has a constant cross-section. 

The inflection point in the curve of the left half of the beam 

is found, by equating the expression for the bending moment 

( — |PZ+%Px) to zero, to be half way between the wall and the 

center of the span (z = JZ). The bending moment diagram is 

shown in Fig. 132(c). 

By integrating equation (100) and observing that y = 0 when 

£ = 0, and that y = A when x=-, the maximum deflection is found 

to be 2 
1 PP 

192 EP 

which is only one-fourth as much as that of a simply supported 

beam similarly loaded (Art. 47). 



BEAM FIXED AT ONE END 145 

PROBLEMS 

142. A timber beam 6 in. wide and 12 in. deep is fixed at both ends and 
has a span of 16 ft. If it is subjected to a concentrated load at the center, 
what load can it safely resist if a working unit-stress of 800 lb. per sq. in. is 
used? Ans. P — 4800 lb. 

143. Find the maximum deflection of the beam described in the preceding 
problem when the beam is subjected to a maximum fiber unit-stress of 800 
lb. per sq. in. 

lc * J jP l 

r \m 
1_[ 

7$b 

b ; 
p («> m. 

• 

55. Beam Fixed at One End Supported at Other End, Concen¬ 

trated Load at Mid-span.—Fig. 133(a) represents such a beam, the 

length of the span being l and the 

load, P. As in the preceding articles, 

the reactions exerted by the wall 

may be replaced by the shear V2 

and the moment M2 acting on the 

section at the wall as shown in Fig. 

133(6). Thus there are three un¬ 

known reactions (Ri, V2,M2) to be 

found. The left reaction Ri may be 

found by use of the equations of the 

two elastic curves; the expressions 

for the bending moments on oppo¬ 

site sides of the load are different, 

and hence the elastic curves on op¬ 

posite sides of the load are differ¬ 

ent; but the two curves have a 

common tangent and a common 

ordinate under the load. After Ri 

has been found from the elastic 

curve equations, the two equations 

of equilibrium may be used to 

find the values of V2 and M2. 

The procedure is as follows: Let the axes be chosen as shown in 

Fig. 133(c). The equations for the elastic curve of the left half 

of the beam are: 

Fig. 133.—Beam fixed at one end, 
supported at other end: concen¬ 
trated load at mid-span. 

EIj^=Rix.(101) 

EI^=lRix2+ci.(102) 
ax 

EIy = lR1x3+c1x+c3.(103) 
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The similar equations of the elastic curve of the right half 

are: 

EIj^=Rix-P(x-\l).(104) 

El'^t=ift ix2 - Px2+iPlx+c2.(105) 

EIy = iRixa-lPx3+lPlx2+c2x+ci. . . (106) 

The five unknowns (ci, C3, c2, C4 and Pi) may be found by 

making use of the following conditions: In (103) y = 0 when 

x = 0; in (105) j| = 0 when x = J; ^ in (102) = in (105), when 

x = ^ in both (102) and (105); y in (103) =y in (106), when x~2 

in both (103) and (106); and, in (106) y = 0 when x-l. 
After the values of the constants are substituted in (103) and 

(106) the following equations of the elastic curves are found. 

24JEIy=4R1x3+3Pl2x-12Ril2x.(103a) 

48Ely = 8Pix3 - 8Pz3 +12Plx2 - 2AR1l2x+Pl3, . (106a) 

and by using the last of the conditions stated above, namely, 

y = 0 in (106) when x — l, the value of R\ is found to be 

Now from the two equations of equilibrium we have (see Fig. 

1336), 
2F = ^P+72-P = 0. 

Hence, 
v2 

ZMB = £Pl-Pi-M2 = 0. 
Hence, 

m2=—&pl 

The maximum positive moment occurs at the mid-span and is, 

Maximum Positive Moment = y&P X 21 — tiPI- 

The shear and moment diagrams are shown in Fig. 133(d). 

56. Comparison with Simple Beams.—In the preceding articles 

it has been shown that a fixed-ended beam is stronger and stiffer 

than a similar beam that is simply supported at its ends. This 

is true because the positive bending moment in the central portion 

of a beam is decreased by the amount of the negative moment at 
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VJ lb. Der ft. 

the ends, and thus more of the material of a fixed beam is effective 

in resisting the loads than in the simply supported beam, since the 

bending moment is distributed more nearly uniformly along the 

length of the fixed beam. 

The effect of applying negative moments at the ends of a 

simply supported beam is shown in Fig. 134. The curve CED, 

referred to CD as a base line, represents the bending moment 

diagram for a simply supported beam subjected fco a uniformly 

distributed load of w lb. per ft., the maximum bending moment 

(as shown in Art. 36, Prob. 88) is at the mid-span and is equal to 

\wl2. Now, if the beam were a fixed-ended beam the negative 

moments at the ends would be 

■fawl2 (as shown in Art. 53) 

and the curve CED would still 

represent the moment diagram 

if AB, Fig. 134(6), instead of 

CD, represents the axis or base 

line. Thus the moment at the 

center is decreased by the 

amount of the negative moment 

at the end, and further, the sum 

of the maximum positive and 

negative moments in a beam 

fixed at both ends is equal to the 

maximum moment in a simi¬ 

larly loaded simple beam. The student should show that this 

statement is also true if the load is concentrated at the mid-span. 

In practice, however, it frequently is difficult to determine to 

what extent a beam is restrained at the ends, since yielding of the 

end-restraining bodies such as abutments, riveted end-connec¬ 

tions, etc., decreases the negative moments at the ends and 

increases the positive moment by an equal amount. Likewise, 

unequal settlements of the ends and temperature changes influ¬ 

ence the stresses in fixed-ended beams to a greater extent than in 

simply supported beams. For these reasons fixed-ended beams 

are not used in preference to simple beams as extensively as the 

above results would seem to justify. However, test results2 

obtained with certain types of riveted end-connections show that 

2 Tests to Determine the Rigidity of Riveted Joints of Steel Structures. 

Bull. No. 104, Engineering Experiment Station, University of Illinois. 

(f>) ° 
Fig. 134.—Relation between moment 

diagrams for fixed and simple beams. 
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the moments at the ends are reduced but little by the yielding of 

these riveted end-restraining connections. 

57. Continuous Beams. Theorem of Three Moments.—A 

continuous beam is one that rests on more than two supports. 

Since the .number of reactions is greater than two, use is made of 

the elastic curve equation in order to obtain the reactions of the 

supports, the two equations of equilibrium alone being insufficient. 

However, instead of determining the reactions first and then 

finding the bending moment (and hence fiber unit-stress) at any 

section, it is more convenient to determine first the negative 

moments over all the supports and then to find the reactions of the 

supports and the bending moments and vertical shears at other 

sections from these negative moments. The negative moments 

may be found by use of the theorem of three moments which may 

be derived from the elastic curve equations of two adjacent spans 

as follows: 

Theorem of Three Moments, Load Uniformly Distributed.— 

Fig. 135(a) represents a continuous beam of several unequal spans; 

w4 
imi'Mimm m 

L-l—u 1 T p vl C/2 
Y W2 lb. per ft. | (a) 

" 3 —T~ 
1 

i4 

(&) V.£ 
M " 

>C 
fat 

V, 

i 
i 

Ws lb. per ft. I 

£ 

(c) 

Fig. 135. Moments at supports of continuous beam. 

each span is subjected to a uniformly distributed load, but the 

load is not constant over the whole length of the beam; all 

supports are assumed to be on the same level. Consider'two 

adjacent spans (second and third spans) in Fig. 135. Let M2> 

Ms, M4, etc., denote the bending moments at the second, third' 

fourth, etc., supports. Let V2 denote the shear on a section just 

to the right of the second support and V-2 just to the left of the 

second support; similarly let F3 and F-3 denote the shears on 

the right and left, respectively, of the third support, etc. 

A free-body diagram showing all the forces acting on that 

part of the beam between the second and third supports is shown 
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in Fig. 135(6) and a similar diagram for the part of the beam 

between the third and fourth supports is shown in Fig. 135(c). 

For the second span let the axes be chosen as indicated in 

Fig. 135(6). Then, the elastic curve equation for the second span 

EI^y = M2+V2x-^f2-. . ..(107) 

EIt=M>x+Y¥-nr+Cl.<108> 

M2X2 , V2X3 W2X4: . , 
EIy=--2T+cix+c2. . . . (109) 

Similarly for the third span let the origin be chosen at the 

second support as shown in Fig. 135 (c). Then 

EI^Ms+Vsx-^.(110) 

EId£=M3X+Yf-^+c3.(111) 

EIy=^f+Vf-^+c3*+C4. . . . (112) 

Now in (109), y — 0 when x = 0, and hence C2 = 0; also y — 0 

when % = 2 and hence the value of ci may easily be obtained. 

Again, in (112) y = 0 when x = 0, and hence C4 = 0; also y = 0 

when x = h and hence the value of cs may be obtained. Further 

^ in (108) is equal to ^ in (111) when x in (108) is equal to h 

and x in (111) is equal to zero. By making use of these facts 

the following equation is found. 

12M2l2-\-SV2l22-Sw2l23=-12M3l3-4:Vsls2+WBh3. . (113) 

Now F2 and V3 may be expressed in terms of M2, M3, M± 
and the known quantities h, l3, W2 and w3 by using one of the 

equations of equilibrium for the forces in Fig. 135(6) and in 

Fig. 135(c). Thus, for the second span (Fig. 1356) one equilibrium 

equation is 

2MC = M2+V2I2 ~ hw2l22+M3 = 0. 

_ — M2+\w2h2 — M3 
Hence, 

(114) 
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and for the third span, 

ZMD = Ms+V3l-iw3h2+M4, = 0. | 
Hence, /i i k\ 

Tr -M3+iw3h*-M, [ ' * ‘ * Ui5; 

K3_ l J 
in which all the moments are assumed to be positive. 

By substituting these values of V2 and V3 in equation (113) 

the following relation between the bending moments at three 

consecutive supports is found: 

M2l2-\-2M3(l2-\~l3) -\-M±l3 = —\w2Z23 i^3^33j 

or, if the subscripts 1, 2, and 3 are used to refer to any three con¬ 

secutive supports and spans the equation may be written, 

M1h+2M2(h+l2)+M3l2= -iwiZi3-iw2fe3. . (116) 

which expresses the theorem of three moments for a continuous beam 

subjected to uniformly distributed loads and resting on supports 

on the same level. 

If the spans are equal (li=h = l) and each span carries the 

same load (w2 = w3 = w) the equation becomes 

Mi+4M2-\-M3= —%wl2, .... (117) 

which expresses the theorem of three moments for a continuous 

beam with equal spans and with a constant uniformly distributed 

load over the entire beam. 

58. Solution of Typical Problem.—Let it be required to draw 

the shear and moment diagrams for a continuous beam of four 

spans, each of length l, when subjected to a load of w lb. per ft. 

over the entire beam, and also to find the maximum fiber unit- 

stress and the equation of the elastic curve of the first span. 

(See Fig. 136(a).) The known quantities are: w, l, E and I. The 

main steps in the solution are: 

(a) By use of the theorem of three moments find the 

negative bending moment over all supports. 

(h) Find the reactions of the supports from the negative 

moments over the supports; all the external forces acting on 

the beam will then be known. 

(c) Find the vertical shears at various sections and draw 

the shear diagram. 



SOLUTION OF TYPICAL PROBLEM 151 

(d) Find the bending moments at various sections and 

draw the moment diagram. 
si 

(e) Equate the maximum bending moment to — and solve 
c 

for s, the maximum fiber unit-stress. 

(/) In the elastic curve equation EI-~ = M substitute 

for M the expression for the bending moment in the first span 

and integrate twice, etc. 

Fig. 136.—Moment and shear diagrams for continuous beam. 

Solution.—(a) In accordance with the theorem of three moments, the fol¬ 

lowing equations may be written: 

M1+4M2+M3=-iwl2, 

M2+±Mz-\-M4=* 

Af3+4Af4+Af5= - \wlK 

Further, M1 = Mh = 0 since there is no restraint at the ends; and M2 = M4, 

from the condition of symmetry. The solution of these equations gives the 

following values: 

Mi = 0, M2=~z\wl*, Mz = —£gwl\ Mi = --%-qwI2, M5 = 0. 

(6) Now the bending moment at a section over the second support as 

found above is —-^gwl2, but the bending moment at any section is the 

algebraic sum of the moments of the forces to the left of the section. 

Hence, 

R\l—wl~=—j Ri=-^-j^wl. 
A 
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Similarly for the moment over the third support we have, 

Ri • 21R2I—w-2l-l =—~^qwI'} R2—^^wI. 

In a similar way the value of R3 is found to be, R3 =%%wl, and from sym¬ 

metry, Ra = R2 and R5 = Ri. 
(c) The shear and moment diagrams are shown in Fig. 136(6) and (c). 

The vertical shear at any section in the first span at the distance x from the 

left support is 

Vx — R\—wx = ^wl—wx, 

and hence the vertical shear is zero when x=^l; the maximum positive 

moment occurs at this section. 

The shear just to the left of the second support is 

V— 2 = R1 — Wl — 7£-^wI — wl — — -g-gwlj 

and the shear just to the right of the second support is 

V 2= R i~\~ Ra — wl—yji^wl T- ij~g-wl—wl= T" -wl. 

Thus, the shear changes at the second support from wl to +^wl 
due to the reaction R2’, in other words, the reaction of a support is equal 

to the arithmetic sum of the shears at the two sides of the support. 

The shears in other spans may be found by the same method as used 

above for the first span; the values are given in Fig. 136(6). 

Thus the reaction at any support may be found by solving for the shears 

on the two sides of the support and adding them rather than by the method 

used under (6) above. 

(d) The bending moment at any section in the first span is 

M'x = RlX- 
wx2 
~2} 

and as noted above this is maximum when x = ^l. Therefore, the maximum 

positive moment is 

11 7 11 w/llA2 121 
Max. pos. moment = —wl • —l — ( —l ) =-wl2, 

P 28 28 2\28 / 1568 

which is less than the maximum negative moment (-^%wl2). 

The inflection point occurs where M'x = 0; thus 

whence 

11 _ wx2 

M*=Mwl'x~T=0’ 

z2 8l 

The bending moment at any section in the second span is 

M"x = M 2 + V2X—wx2, 

= —-£%wl2-\-^wlx—wx2. 
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The moment is maximum when x=^l, since this is the value that makes 

the shear in the second span equal to zero. The value of the maximum posi¬ 

tive moment in this span is tz^qwI2. 

(e) The greatest bending moment that the beam is subjected to is the 

negative moment at the second (or fourth) support, and hence the maximum 

unit-stress in the beam is 

s 
I 28 

c 
7* 

(/) The elastic curve equation for the first span is 

d2y 11 
EI—~ = R ix-= —wlx-. 

dx2 2 28 2 
Integrating we have, 

„jdy 11 x2 wx3 
El—= —wl-f-ci 

dx 28 2 6 

_T 11 X3 wx4 
Ely — —wl-\-c%x ~f- c2- 

y 28 6 24 

Now, when z = 0, y=0; and when x=l, y = 0; thus c2 =0, and Ci may easily be 

found to be —-^wl3. Therefore the elastic curve equation of the first span is 

__ 11 x3 wx4 1 
Ely = —wl-wl3x. 

y 28 6 24 42 

59. Values of Moments and Shears.—In Fig. 137 are given 

the values of the coefficients from which the negative moments 

0_0 

ofi Ho 
0_g_0 

oil tfi ito 
0 10 

_1_ 
10 0 

.6 t^ 5 t JL jL.fi 
Hio 10 110 10 1 10 10 I* 

0_fa_~£a_fs_0 

oS mm mm m 
0_^_£^3_fa_^_0 

ofS iffi ifSt iffif iSi iifo 
Fig. 137.—Values of shear and moment coefficients for continuous beam of 

equal spans subjected to uniform load. 

over the supports and the vertical shears at either side of each 

support may be found for continuous beams resting on supports 

on the same level, having equal spans of l ft. each, and carrying a 

constant uniform load of w lb. per ft. on each span. 
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The values directly above the supports are the moment coeffi¬ 

cients, that is, the numbers by which — wl2 must be multiplied 

to obtain the bending moments over the supports. Similarly, 

the numbers on either side of the supports are the shear coefficients, 

that is, the numbers by which wl must be multiplied to obtain the 

magnitude of the vertical shear for the section; the vertical 

shear is negative for the section to the left of each support and 

positive for the section to the right of each support. The reaction 

at each support is the arithmetic sum of the vertical shears on the 

two sides of the support. The values given in Fig. 137 may be 

found by the methods discussed in Art. 58. 

PROBLEMS 

144. A continuous beam consists of four equal spans each 12 ft. long, and 

is subjected to a uniform load of 100 lb. per ft. over its entire length, (a) 

Find the reaction of the second support. (b) If the beam has a rectangular 

cross-section, the depth being twice the width, what is the depth if the max¬ 

imum fiber unit-stress in the beam is 100 lb. per sq. in.? 

Ans. (a) #2 = 1370 lb., (6) depth = 6.06 in. 

145. A standard 12-in. 40-lb. I-beam is used as a horizontal continuous 

beam over four spans. The lengths of the spans are 12, 16, 16 and 12 ft. 

respectively, from left to right. The loads are uniformly distributed over 

each span, the loads per foot of length on the four spans being 1600, 2400, 

2400, and 1600 lb. per ft., respectively. Find (a) the maximum fiber unit- 

stress in the beam. Ans. (a) s = 16,630 lb. per sq. in. 

146. A continuous beam has three spans of 10 ft. each. The first span 

is subjected to a uniformly distributed load of 3000 lb. per ft. The other 

spans are not loaded. Find the four reactions. 

Ans. #! = 13,000 lb. #2 = 19,500 1b. #3=-3000 1b. #4 = 5001b. 

147. What should be the depth of a pine continuous beam having four 

equal spans of 7 ft. in order to resist a uniformly distributed load of 300 lb. 

per ft. over each span? Use a working unit-stress of 1000 lb. per sq. in. and 

make the depth of the beam twice the width. 

148. A 10-in. 25-lb. I-beam is continuous over three spans, each having a 

length of 16 ft. The first and third spans are loaded with 800 lb. per ft. and 

the second span is not loaded. Find the maximum fiber unit-stress in the 

beam and draw, to scale, the moment and shear diagrams. 

149. A beam is continuous o\ er three spans of 20,10, and 15 ft. respectively. 

The first and third spans are each loaded by a uniformly distributed load of 

400 lb. per ft. and the second span is not loaded. Find the moment over each 

support and the shear at the right of the first support. 
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60. Advantages and Disadvantages of Continuous Beams.— 

The remarks in Art. 56 concerning fixed-ended beams apply 

also, in the main, to continuous beams; the negative moments 

over the supports reduce the moments (and hence stresses) near 

the centers of the spans, and hence continuous beams are stronger 

and stiller than simply supported beams of equal spans. On the 

other hand, the uneven settlement of supports may change the 

moments at the supports and throughout the beam from those 

found by the analysis given above; further, the stiff er the beams 

the greater is the change in the moments. Partly for this reason 

and partly because the loads on the various spans of continuous 

beams in structures may vary considerably from that assumed in 

the design, it is frequently assumed in practice that in uniformly 

loaded beams of four or more equal spans all the spans (except the 

end spans), are subjected to the same maximum bending moment, 

a common value being +%wl2; the maximum moment in the end 

spans is somewhat greater (t+ivI2 is frequently used). Compare 

these values with those given in Fig. 137 for beams having more 

than four spans and note that the moments do not vary greatly 

over the inner supports. Two-span and three-span beams are 

stressed higher than beams of four or more spans, and for such 

beams the maximum moment in each span is frequently assumed 

to be -Yowl2. However, the values used in any case may be based 

on the results of an analysis of the moments in continuous beams 

similar to that discussed in the preceding articles. 

61. Theorem of Three Moments for Concentrated Loads.— 

The loading on most continuous beams may be assumed to be 

uniformly distributed without introducing serious errors, but in 

some cases heavy concentrated loads act on the beams and the 

results given in Art. 59 are not applicable. Space does not permit 

the derivation, but the theorem of three moments that applies to a 

beam of constant cross-section with supports on the same level 

and subjected to concentrated loads is as follows: 

M ih+2M2(11+12) +M3I3 

= —Pih2(k — ks) — P2/22(2A; — 3k2+k3). (118) 

Mi, M2 and Ms are the bending moments at any three consecu¬ 

tive supports, h and I2 being the lengths of the two consecutive 

spans at the ends of which the moments are Mi, M2 and M3. 
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Pi is a concentrated load in the first of the two spans at the dis¬ 

tance kli from the first of the three supports, and P2 a concen¬ 

trated load in the second of the two spans at the distance kh 
from the second of the three supports, where k\ and ^2 are pro¬ 

portional parts of the spans such as J, J, etc. 

PROBLEM 

150. A continuous beam has two spans, the left span 20 ft. long and the 

right span 18 ft. long. The 20-ft. span has a load of 1600 lb. 10 ft. from the 

left end, and the 18-ft. span has a load of 15,000 lb. 8 ft. from the right end. 

Eind the proper size of a steel I-beam to resist these loads using a working 

unit-stress of 16,000 lb. per sq. in. Ans. 12-in. 40-lb. I-beam. 



CHAPTER VIII 

DEFLECTION OF STATICALLY DETERMINATE BEAMS 

(Moment-area Method) 

Note. Arts. 44 to 46 should be studied before this chapter is 
read. 

62. Introduction.—In Chapters VI and VII the elastic curve 
(Pv 

equation M=±EI-^~ was used (1) to find the deflection of 

beams and (2) to find the reactions (both forces and couples) of 
beams for which the number of unknown reactions was greater 
than the number of equilibrium equations, that is, of statically 
indeterminate beams. The method of treating the equation in 
each case was to express M in terms of the reactions and x, and then 
to integrate both sides of the equation, determining constants 
in the equations (whether constants of integration or reactions) 
from the physical conditions satisfied by the beam. This method 
was called the double-integration method. 

Another method of treating the equation leads to the use of 

moments of areas of the moment-diagram ^or of the ^ -diagram j 

for finding deflections of beams and reactions of statically indeter¬ 
minate beams, and hence the method is called the moment-area 
method. For various purposes and for certain types of beams, as 
for example beams having a variable moment of inertia, it possesses 
advantages over the double integration method although it should, 
perhaps, be considered supplementary to, rather than a substi¬ 
tute for, the double integration method. 

Two methods of using moments of areas of the moment- 

diagram ^or of the ^ -diagram^ will be discussed briefly; namely, 

the slope-deviation method and the conjugate beam method.1 

1 See “ Deflections of Beams by the Conjugate Beam Method," by H. M. 
Westergaard, Journal of the Western Society of Engineers, vol. 26, Nov., 
1921. 

157 
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These two methods will be used in this chapter for determining 

the deflection of statically determinate beams, and the same 

two methods will be used in the following chapter for determining 

the reactions, as well as the deflections, of statically indeterminate 

beams. 

Slope Deviation Method 

63. Theorems of the Slope-deviation Method.—As explained 

in Art. 45, the equation of the elastic curve of a beam is 

M= —EI~^, in which M is positive when it produces tensile 

stress on the bottom of a horizontal beam, and y is positive when 

measured downwards. This equation may be written 

M_ 

El 

,(dy\ 
\dx) 

dx 
or Kdx 

EI -"(I): (119) 

dy . 
in which is the slope of the elastic curve at a point for which 

the bending moment is M. If 0 denotes the angle made by the 

tangent line to the elastic curve with the axis of the undeflected 

beam, then ^ = tan 
dx 

But in a well designed beam 0 is small, 

and hence, without appreciable error, tan 0 may be replaced by 0. 

Therefore, 

dO 
EI 

dx and Ad / dx, (120) 

in which AO denotes the change or increment in the angle 0; 0 

is considered positive when measured in the clockwise direction 

of rotation. 

A graphical interpretation of this equation may be made as 

follows: Fig. 138(a) represents a beam subjected to a distributed 

M 
load; Fig. 138(6) represents the -^-diagram for the beam, any 

ordinate in which is the bending moment at the section where the 

ordinate is erected divided by EI; if the beam is homogeneous 

and has a constant cross-section, EI is a constant and hence the 

M 
•gj-diagram has the same form as the moment-diagram. In 

Fig. 138(c) PABQ represents the elastic curve of the beam. 
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Now 
M 

indicated in Fig. 138(6), jdx is represented by an 

M fBM 
elementary area under the -^-diagram and J is repre- 

M . A 
sented by the total area under the -^-diagram between specified 

HI 

ordinates, such as ordinates erected at A' and B'. Further, dd 

represents, as shown in Fig. 138(c), the change in the slope of the 

elastic curve at two points a 

short distance, dx, apart, and 

m0A 
If :A TB 0 
K 1 
^ i (a) i A 

| 
1 
i 
i 

[j-^ — diagram 

1 S' i T 
l / 

1 
i : N r 1 

A'i A i ax (6) !8' 
1 

! Q 

hence I ‘ dd = Ad represents 
JQb 

the change in slopes of the 

elastic curve at any two points, 

such as A and B. Therefore, 

equation 120 leads to the fol¬ 

lowing theorem: 

Theorem I. When a straight 

beam is subjected to bending the 

difference in the slopes of the 

elastic curve at any two points 

is equal in magnitude to the 

area of the diagram between Fl«- 138.—Deflection of a beam; slope- 
B1 deviation method. 

the two points. 

Now let t, Fig. 138(c), denote the distance of any point A on 

the elastic curve, measured in a direction perpendicular to the 

original position of the beam, from a tangent drawn at any other 

point B on the elastic curve. The distance t will be called the 

tangential deviation of the point. Then, from Fig. 138(c), 

=fdt = fxde>.(121) 

and from equation 120, 

Therefore, 

M , 
dd = ^jdx. 

CMx, 

=J wdx- 
(122) 

Mx 7 . 
But, as is evident from Fig. 138(6), jdx is the moment of the 
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elementary area, 
Mdx 

~WT' 
M 

of the -^-diagram about the ordinate 
JcjI 

through the point A whose tangential deviation is t, and hence /Mx M 
-jjrjdx is the moment of that part of the -^-diagram between 

the two ordinates considered; the moment being taken about 

the ordinate through the point whose tangential deviation is 

desired. The following theorem therefore may be stated: 

Theorem II.—When a straight beam is subjected to bending the 

distance of any point A on the elastic curve, measured normal to the 

original position of the beam, from a tangent drawn to the elastic 

curve at any other point B, is equal in magnitude to the moment of 

M 
the area of the r—^-diagram between the two points about an ordinate 

through A. 

Applications 

64. Simple Beam. Concentrated Load at Mid-span.—The 

beam is shown in Fig. 139(a); the weight of the beam is assumed 

to be negligible. Fig. 139(6) 

shows the -^j-diagram; the 

dangerous section is at the mid- 

span; the maximum bending 

PI 
moment is (Art. 36), and 

the bending moment at a sec¬ 

tion the distance x from the 
p 

left support is ^ x. Since the 

beam is assumed to be homo¬ 

geneous and to have a constant 

cross-section, the ^-diagram 

has the same form as the mo- 

In Fig. 139(c) 

ACB represents the elastic 

curve of the beam. 

D 

Fig. 139.—Deflection of simple beam, ment-diagram. 

load at center; slope-deviation method. 

Let it be required to find the maximum deflection A, which 

occurs at the center of the span. The tangential deviation of 

the point A from a tangent at C is tA (Fig. 139c) which is equal in 
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magnitude to A, and which may be found from Theorem II of 

Art. 63. Thus, 

A = tA = Moment of area A'C'H about A' 

= Area A'C'H times distance to centroid, G, of area 

A'C'H from A' 

= 1 PI J 21 = PI* 

2 4#/2 3 2 48EP 

Next let it be required to find the deflection y of a point E 

(Fig. 139c) at a distance x from the left support. If a tangent 

AD is drawn to the elastic curve at A, is the tangential devia¬ 

tion of B and t\ is the tangential deviation of the point E. From 

the geometry of the figure we have, 

y+ti x . x . 
__ = r or y=hT-tu 

and since the slopes of the elastic curve are small we have, 6 

Therefore, 
y = dx—t\. 

Now 9 is equal to the change of the slopes at A and C and hence, 

according to Theorem I, 

0 = area A'C'H 

_ 1 PI l _ 1 PI2 

2 4 El 2 16 El ’ 

and, according to Theorem II, 

ti= moment of area A'MN about MN 

1 Px X x_ Px3 

~2EI 2 3—12#7‘ 
Therefore 

_Pl2x Px3 

V~16EI 12 El’ 
or 

48EIy=Px(Zl2-4:X2), 

which is the elastic curve equation for the left half of the beam. 

65. Cantilever Beam. Concentrated Load at End.—In 

Fig. 140(a) AB represents the elastic curve of the beam, and in 

M 
Fig. 140(6), A'B'H represents the -gj-diagram. The beam is 

assumed to have a constant cross-section and the weight of the 

h 
V 
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beam is neglected. The maximum deflection of the beam may 

be found as follows. 

The tangential deviation, tAj of A from a tangent drawn at B 

is^equal to the maximum deflection A of the beam. Thus from 

Theorem II we have, 

A = tA = moment of area A'B'H about A' 

— Area A'B'H times distance to centroid. 

1PP 2 1 PE 
2 El'3l 3 El ’ 

The deflection, y, of a point D at the distance x from the free 

end may be found as follows: The tangential deviation, tDf of D 

from a tangent at B is equal to y; thus, using Theorem II we have, 

2/ = ^=moment of area B'D'EH about D'E. 

Let the area be divided into two triangular areas as indicated 

by the dotted line. Then 

Hence, 

«-»>■ | « 
3 +2ei :v ; ' 

6EIy = P(x3-3l2x+2l3) 

W lb. per ft. 

Fig. 140.—Deflection of cantilever Fig. 141.—Deflection of simple 

beam, load at end; slope-devia- beam; uniform load; slope- 

tion method. deviation method. 

which is the elastic curve equation for the beam. 

66. Simple Beam; Load Distributed Uniformly.—The beam 

shown in Fig. 141(a) has a constant cross-section and the weight 

of the beam is negligible. The moment diagram A'HB' (Fig. 
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1416) is a parabola, the ordinate M to any point being expressed 

by the equation M = \wlx—\wx2, and the maximum ordinate 

being \wl2 (see Prob. 88). The elastic curve is represented by the 

line ACB in Fig. 141(c). 

The maximum deflection of the beam may be found as follows: 

The tangential deviation tA of the point A (Fig. 141c) from a 

tangent at C is equal in magnitude to the maximum deflection, A, 

of the beam. Hence according to Theorem II we have 

A = tA = -^j (moment of area A'C'H about A'). 
Mil 

Now, 

Area A'C'H = iA'C'XC'H (see Art. 159, Appendix II), 

and the distance of the centroid of area A'C'H from A' is f AC'. 
Therefore, 

A_, _ 1 /2 1 12l 5 l \ 

A A EI\Z%Wl 2 8 2/ 
_ 5 wE_ 5 WP 

384 El 384 EE 

67. Cantilever Beam; Load Distributed Uniformly.—The elas¬ 

tic curve of the beam is repre¬ 

sented by the line AB (Fig. 

142a), and the moment-dia¬ 

gram for the beam is shown in 

Fig. 142(6). The maximum 

moment, at the wall, is — \wl2 
and the moment at a distance 

x from the free end is — 

Now the tangential deviation 

„ T*-. n i. , of the point A from a tangent 
Fig. 142. — Deflection of cantilever n ■ . . 

beam, uniform load; slope-deviation drawn at B is equal m magm- 
method. tude to the maximum deflec¬ 

tion, A. Hence, by integrating 

equation (122), we have 

A 

-AX 
Mxdx 

wl4 
8El 

~2~.xdx 

1 WP 
8 EF 
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or, from Theorem II, the value of A is found without integrating: 

A = tA = r— (moment of area A'B'H about A') 
til 

__1_/1 wl2 3 

~EI\3 2 

_ 1 wl4 

~8 ~Tr 

(See Art. 159, Appendix II) 

Conjugate-beam Method 

68. Conjugate Beam Defined. Equations Stated.—By the 

conjugate-beam method the deflection at any section of a beam 

(here called the “ given ” beam) is found by calculating the 

bending moment at the corresponding section of another beam 

(here called the conjugate beam), the conjugate beam being sub¬ 

jected to a distributed load such that the intensity of the load at 

M 
any section is proportional to the ordinate of the ^-diagram at 

til 

that section. That is, the conjugate beam may be assumed to be 

loaded with sand the depth of which over any section of the beam 

M 
is, according to a certain scale, the ordinate of the ^-diagram 

til 

at that section. To describe this loading the conjugate beam will 

M 
be said to be loaded with the -^-diagram. 

til 

By definition the conjugate beam is one that (a) has a length, 

V, which is equal to the length, l, of the given beam, (6) is in 

equilibrium, and (c) is so loaded that the bending moment Mr 
at any section is equal to the deflection, y, at the corresponding 

section in the “ given ” beam. The defining equations then are: 

From (a) 

V = l; 

from (b), since the loads and reactions constitute a parallel system 

of vectors,2 there are two equations of equilibrium; namely, 

2F' = 0 and 2Af' = 0 
and from (c) 

M'x = yx. 

2 It will be found that the loads and reactions are not forces; that is, they 

are not expressed in pounds, tons, etc., but for convenience they may be called 

elastic forces, since they involve the elastic properties of the beam. 
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The last equation requires, as is shown below, (1) that the vertical 

shear, V', for any section of the conjugate beam shall be equal to 

the slope at the corresponding point of the elastic curve of the 

“ given ” beam; that is, 

(123) 

and (2) that the intensity, w', of the distributed load on the con- 

M 
jugate beam at any section shall be equal to the for the 

til 

corresponding section in the given beam; in other words, the 

M 
conjugate beam is loaded with the ^^diagram. Thus, 

hii 

(124) 

Proof of Equations (123) and (124).—Let a straight beam be 

subjected to a distributed load only; the intensity of the load at 

the distance x from the left support is wx, and the vertical shear 

and bending moment for this section are Vx and Mx. In the 

following equations the sign of the bending moment is determined 

as stated in Art. 34; the vertical shear Vx is positive when 

directed upwards; the deflection y is positive in the downward 

direction, and x is positive to the right, and hence the elastic 

when measured in the clockwise direction of rotation. 

Now the difference, dV, in the vertical shears for two sections 

the distance dx apart is 

dV = wdx or w— j— 
dx 

(125) 

But from Art. 37, 

dx ’ 
(126) 

and hence, 
dV __ d2M _ 

dx dx2 W' 
(127) 

Now the elastic curve equation of the beam is (see Art. 45), 
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Thus a comparison of equations (127) and (128) shows that the 

deflection y of the “ given ” beam would be equal to the bending 

moment M' at the corresponding section of another beam (the 

M 
conjugate beam) which has a distributed load equal to that 

M 
is, the conjugate beam is loaded with the -gj-diagram. 

Further, since the slope 0 of the elastic curve at any point is 

6 = ~, it follows that, if the conjugate beam is loaded so that 
(XX 

M' = y, then from equation (126) 

That is, the vertical shear for any section in the conjugate beam 

must be equal to the slope of the elastic curve at the corresponding 

section in the given beam. 

It will be noted that, in the conjugate beam method, the 

actual elastic beam is replaced by a rigid beam with the elastic 

properties of the actual beam introduced in the loads and reac¬ 

tions of the rigid beam. For this reason the method is some¬ 

times referred to as the method of elastic weights. 

Summarizing: The equations, then, that the conjugate beam 

for any given beam must satisfy are 

l' = l, SF' = 0, 2M' = 0, M' = y 

r=e, »'=^. 

The applications of these equations in finding the deflection of 

various types of beam is given below. 

Applications 

69. Simple Beam; Concentrated Load at Mid-span.—The 

beam is bent as shown in Fig. 148(a). The bending moment dia¬ 

gram (M-diagram) is shown in Fig. 143(6) and since the beam has a 

constant cross-section the 
M_ 

El 
diagram will have the same form 

as the Af-diagram. The conjugate beam is shown in Fig. 143(c); 

the bending moment at the mid-span section of the conjugate 

beam is equal to the deflection of the mid-span section (maximum 
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deflection) of the given beam, provided that the conjugate beam 

is made to satisfy equations of Art. 68. This may be done by 

selecting the beam as shown in Fig. 143(c) in which l' = l; the dis- 

M 
tributed load is the ^-diagram; since M' = y, and since y = 0 at 

hi 

the ends of the “ given ” beam, the moment M' at the ends of the 

conjugate beam must also equal 

zero, and hence the ends of the 

conjugate beam are subjected to 

zero moments, that is, the ends 

are free to turn as shown in 

Fig. 143(c); further, since V' = d 

and since 0 is not zero at the ends 

of the given beam, there must 

be vertical shears at the ends of 

the conjugate beam, and these 

could be produced by reactions 

R'i and R'2 of supports at the 

ends. Thus, if the “ given” beam . - ^ 

is a simple beam the conjugate ^ 143. _ Deflection of Csimple 

beam also is a simple beam. beanl) load at center. conjugate_ 

Now the maximum deflection beam method. 

A of the given beam occurs at 

the mid-span section and hence it is equal to the moment, M'c, 

at the center of the conjugate beam, which is the moment of the 

couple shown in Fig. 143(c). Thus, 

, _J[_Pl2 2 l_ _1JPI* 
A~M c 16 El 3 2 48 EF 

Further, since the conjugate beam is in equilibrium the values 

of R'i and R'2 may be found from the equations 2F' = 0 and 

2AP = 0. Thus, from 2Af' = 0, or from the conditions of sym¬ 

metry, we obtain, R'i = Rr2. And from 2F' = 0 we obtain the 

values of R'i and R'2, which are equal to the vertical shears at 

the ends of the conjugate beam and hence equal in magnitude to 

the slopes, dA and 0B, at the ends of the “ given ” beam. Thus, 

*F"=2R,'-\m-l=Q' 

1_PP 
16 EV 

whence, 
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as is evident from inspection of Fig. 143(c). Therefore, 

_J_Pl2 

°A~m Et 

Deflection at Any Point.—The deflection y of the u given 

beam at a distance x from the left support is equal to the bending 

‘moment M'x of the conjugate beam which, as indicated in Fig. 

144, is 
D, lPx2 1 

y = M'x = R \X - 2 -y • 

_ Pl2x }_Px^= P /Px_x^\ 

~mi 12 El ~4:EI\ 4 3/* 

load at end; conjugate-beam method. 

This is the equation of the elastic curve of the left half of the 

given beam. 

70. Cantilever Beam; Concentrated Load at End.—The 

given beam is assumed to have a constant cross-section; it bends 

as shown in Fig. 145(a). The conjugate beam is shown in Fig. 

145(6); the distributed load on the conjugate beam is the 

M 
-pry-diagram and is an upward load since M is negative. The 
hi 
end conditions of the conjugate beam are found by making the 

beam satisfy the fundamental equations of Art. 68. Thus, since 

M' = y and V' = 0, and, further, since y and 0 are not zero at the 

free end of the “ given ” beam, then the moment M'o and the 

shear V'o at the left end of the conjugate beam are not zero. 

M'o and V'o may be produced by fixing the beam at the left end. 

On the other hand, since the 6 and y at the right end of the “ given ” 

beam are zero, the M' and V' at the right end of the conjugate 

beam must be zero, and this condition will exist if the right end is 
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free. Therefore, the conjugate beam corresponding to a canti¬ 

lever beam is another cantilever beam with the end conditions 
interchanged. 

Now the maximum deflection, A, of the “ given ” beam is 

equal to the moment M'o at the left end of the conjugate beam. 
Thus, 

A = M' 
1 Pl2_ 2 

2 EI S1 
1 PE 

3 EI‘ 

The slope, 0, at the free end of the given beam may be found, 

if desired, by calculating the shear V'0 at the left end of the con¬ 

jugate beam; the value found is 

d = V'0 
1 PE 

2 EE 

The elastic curve equation may be found in a manner similar 

to that used in the preceding article. 

Fig. 146.—Deflection of simple 

beam, uniform load; conju¬ 

gate-beam method. 

Fig. 147.—Deflection of cantilever 

beam, uniform load; conjugate- 

beam method. 

71. Simple Beam; Load Distributed Uniformly.—The beam 

is assumed to have a constant cross-section; it deflects as shown 

in Fig. 14.6(a). The corresponding conjugate beam is shown in 

M 
Fig. 146(6), the distributed load being the -^j-diagram, which is 

a parabolic area, the maximum ordinate of the diagram being 

~ (see Prob. 88). 

The maximum deflection A is equal to the moment at the 

center of the conjugate beam, which is the moment of the couple 

shown in Fig. 146(6). Thus, 
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A ,jr _2 1WI l 51 

A Mc 38 El'2'8 2 

= _5 wP = _5__WP 
384 El 384 El * 

72. Cantilever Beam; Load Distributed Uniformly.—The 

beam has a constant cross-section; it deflects as shown in Fig. 

147(a). The corresponding conjugate beam is shown in Fig. 

147(6). The maximum deflection A is equal to the moment, 

M'0, at the left end of the conjugate beam. Thus, 

1 wl^ 3,1 wP _ 1 Wl3 

A~M° Z 2EI & 8 El 8 EI~ 

73. Simple Beam; Concentrated Load at Any Point.—Let 
the load act at a distance a from the left end and 6 from the right 

M 
end; the deflected beam is shown in Fig. 148(a). The -^-diagram 

is shown in Fig. 148(6) as a distributed load acting on the con¬ 

jugate beam; the “ given ” beam is assumed to have a constant 

cross-section. 

The total load is ^ • Z and its action line is at a distance of z hilt 
§(Z+a) from the left end. From the equations of equilibrium, 

XF' = 0 and 2Af' = 0, we find the values of R'i and R'2 (and hence 

of 6a and 6b) to be, 

pr 1 l~\~b Pcib 

Ul=z~rm and R' 2 
1 Z+a Pab 

The deflection y at the distance x from the left end of the given 

beam is equal to the bending moment, M'x, in the conjugate 

beam. Thus, 

y=Mx=R,x-^-wlx 

_ 1 l+b Pab 1 Pbx3 

3 l 2EIX 6 IEI 

Phr 
.... (129) 

which is the elastic curve equation of that portion of the beam 

to the left of the load P. 

The maximum deflection may be found as follows: The max- 

mum moment in the conjugate beam is equal to the maximum 
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deflection in the given beam; now the section of maximum moment 

in the conjugate beam is the section for which the vertical shear in 

the conjugate beam is zero. Thus, the value of x' in the following 

equation locates the point of maximum deflection in the given 

beam. 

V' 
jj, Pbx2 . 

Rl~mrQ 

whence, 

_1Z+6 Pab Pbx2 _ _ 

~z~r2Ei~wn~"' 
x = Vfr(J+b).(130) 

If this value of x is substituted in equation (129), the resulting 

value of y is the maximum deflection A, (see Art. 50 for the value 

of A). 

PROBLEM 

151. Find, from equations (129) and (130), the maximum deflection of a 

simple beam subjected to a concentrated load at the center of the span, and 

compare the result with that given in Art. 47. 

Fig. 148.—Deflection of simple beam, Fig. 149.—Deflection of beam with 

load at any point; conjugate-beam variable section; conjugate-beam 

method. method. 

74. Simple Beam; Cross-section not Constant.—Let a con¬ 

centrated load act at the center of a simple beam, and let the 

moment of inertia for any section in the center half of the beam 

be I and for any section in the outer quarters \l as indicated 
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in Fig. 149(a). The moment diagram is shown in Fig. 149(6), 

and the ^-diagram is shown in Fig. 149(c) acting as a load on 
tLl 

M 
the conjugate beam. The -^-diagram may be divided into four 

hi 

triangles, I, II, III and IV, as shown in Fig. 149(c). From the 

equilibrium equation 2F' = 0, we have 

5 PI2 
#'l =Ql+Q2 = gHrp 

and the maximum deflection A, which is equal to the bending 

moment M'c at the center of the conjugate beam is, 

A=M’c— R'i-—Qi^l—Q2^l 

_ _l__1 \PP 
\128 96 192/ El 

3 PP 

~ 128 El' 

PROBLEM 

152. A simple beam is subjected to a concentrated load P at the center 
of the span; the moment of inertia of the left half of the beam is / and of the 

right half is \I. Derive the expression for the maximum deflection of the 
beam. 

Note.—The problems in Chapter VI may also be used in connection with 
this chapter. 



CHAPTER IX 

STATICALLY INDETERMINATE BEAMS 

(Moment-area Method) 

75. Introduction.—As explained in Art. 51, a statically inde¬ 

terminate beam is one for which the number of reactions is greater 

than the number of equations of equilibrium; in order to deter¬ 

mine the reactions for such a beam the equation of the elastic 

curve of the beam is needed, -in addition to the equations of equi¬ 

librium. The use, by the double integration method, of the gen¬ 

eral equation of the elastic curve for this purpose, is discussed in 

Chapter VII. In this chapter the moment-area method will be 

used to furnish sufficient equations, in addition to the equations 

of equilibrium, to determine the reactions of statically indeter¬ 

minate beams. Further, two methods of using moment-areas 

will be employed; namely, the slope-deviation method and the con¬ 

jugate-beam method; the equations and theorems used in the 

slope-deviation method are stated in Art. 63, and the equations 

used in the conjugate-beam method are given in Art. 68. 

Slope-deviation Method 

76. Beam Fixed at Both Ends; Load Concentrated at Mid¬ 

span.—The beam is shown in its deflected form in Fig. 150(a). 

The beam may be considered to have been a simple beam to which 

negative end-moments have been applied which cause zero slopes 

at the ends as indicated in Fig. 150(5). The moment-diagram 

may be found by superimposing the positive moment-diagram 

for a simple beam subjected to a concentrated load at the mid¬ 

span, the maximum ordinate to which is at the mid-span and 

PI 
equal to -j-, and a negative moment-diagram consisting of a 

rectangle, the constant ordinate to which is the unknown end- 

moment Mo; this superimposed diagram is shown in Fig. 150(c), 

173 
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the end-moments being known to be equal from the conditions 

of symmetry (or of equilibrium). Since the beam has a constant 

M 
cross-section, Fig. 150(c) also represents the -^-diagram. Since 

the beam is fixed at both ends, we have 

Change of slope from A to B = zero, 

and hence, from Theorem I of Art. 63, we have 

Total area of ^-diagram = 0, 
LjI 

that is, 

"■+«•)-o. 
and hence, 

M0=-\Pl. 

Fig. 150.—Moments at ends of fixed Fig. 151.—Moments at ends of fixed 

beam; slope-deviation method. beam; slope-deviation method. 

According to Theorem II of Art. 63 the maximum deflection, 

A, which occurs at C (Fig. 150a), is 

M 
A = moment of -^-diagram from A' to C' about C 

Jhl 

1 (moment of area A'DC' about C'D-\-moment of 

~El area A'GEC' about C'E) 

= JJ_\Pl l_ 11 , PI l_ l\ 
EI\ 2 4 *2*3 2' 8 *2*4/ 

PP 
192 EP 
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77. Beam Fixed at Both Ends; Load Uniformly Distributed. 

The deflected beam is shown in Fig. 151(a). The ^-diagram 
El 

is shown in Fig. 151(6); it is considered to be composed of two 

parts, as in the preceding article, consisting of the positive area 

A'DB' and the negative area A'GHB'. 

Since the change in slope from A to B (Fig. 151a) is equal to 

zero we have, from Theorem I of Art. 63, 

that is, 

Hence, 

Total area of 
El 

-diagram = 0, 

2 MoZ_ 
3 8EIt+ El~ 

Mq — — 
wl2 

12* 

And from Theorem II of Art. 63, the maximum deflection, A, is 

A = moment of area A'DC' about CD—moment of area 

A'GEC' about C'E 

_2 wl2 l 3 l / wl2 \ l 

3 SEI 2 w' 2\12EI/ 4 

wl4 
“384El' 

78. Beam Fixed at One End, Supported at Other End; Load 
Concentrated at Mid-span.—The deflected beam is shown in 

M 
Fig. 152(a), and the -^-diagram considered to be made up of 

El 

two parts, as discussed m Art. 76, 

is shown in Fig. 152(6). Thus 

the moment-diagram consists of 

a triangle with the maximum 

ordinate at the center of the span, 

the same as that for a simple 

beam with a concentrated load P 

at the mid-span, and a negative 

triangular diagram the ordinates 

to which vary from Mo at the 

wall to zero at the left end. Fi 

beam; slope-deviation method. 

er, since the cross-section of 
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the beam is constant, the ^-diagram has the same form as the 
El 

moment-diagram. 

Since the tangential deviation, tA, of the point A from a tan¬ 

gent drawn at B is equal to zero, we have, from Theorem II of 

Art. 63, 

tA = moment of 
M_ 

Ei 
■diagram about A' = 0 

of area A'DB' about A'+moment of area 

A'GB' about A') =0 

1 PI 11 Mol 2 

24EI 'l 2^2 EI Z 

M0=-&Pl 

= (moment 

Hence 

Fig. 153.—Moment at fixed end of 

beam; slope-deviation method. 

79. Beam Fixed at One End, 
Supported at Other End; Load 
Uniformly Distributed.—The de¬ 

flected beam is shown in Fig. 

M 
153(a) and the -^j-diagram is 

shown in Fig. 153(6). The tan¬ 

gential deviation of the point A 

from a tangent at B is equal to 

zero. Hence, from Theorem II 

of Art. 63 we have 

M 
tA — moment of ^-diagram about A' = 0 

El 

= moment of area A'DB' about A'+moment of area 

A'GB' about A' = 0 

Hence, 

2 wl2 l_,lMo 2. 

3 8F/‘^2+2 EI1'31 

Mq— — 
wl2 

T* 

80. Continuous Beam; Theorem of Three Moments.—Let 

Fig. 154(a) represent a continuous beam subjected to uniformly 

distributed loads; the beam has a constant cross-section and rests 

on supports that are on the same level. 
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The elastic curve of two adjacent spans of the beam is shown 

in Fig. 154(6). If, over the supports, hinges are introduced, as 

indicated in Fig. 154(c) and then external end-moments, Mi, M2 

and Ms, are applied as shown, the beam will act in all ways as the 

original beam acts, provided that the values of Mi, M2 and M3 

are the values of the bending moments at the supports of the orig¬ 

inal beam. The moment diagram formed by superimposing the 

positive and negative moments, caused by the loading shown in 

Fig. 154(c) is represented in Fig. 154(d). 

FiG. 154.—Moments at supports of continuous beam; slope-deviation method. 

Let a tangent be drawn to the elastic curve at the support B 

(Fig. 1546); since the elastic curve is continuous over the sup¬ 

port, the tangent to the elastic curve at B is common to the two 

curves of the adjacent spans h and I2. 

Now, from Theorem II of Art. 63, the tangential deviation h 

of the point A from a tangent at B is 

h = (moment, about A', of area Amoment 
£j L 

about A', of area A'GHB') 
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-h(5T,''3+5"4+I"-,''t) 

1 / will* MJi2 M2h2\ 

EI\ 24 + 6 3 /’ 

Similarly, taking moments, about C'} of areas of the moment 

diagram for the next span, we have 

1 / 2 w2h2 7 , 1M j l2.1u 7 2 l2\ 

t2=m\3~T'h' 2+2Msh' 3+2M24hT) 

1 /W2I24 , M2I22 , Msl22\ 

Now, from similar triangles, ^-= 
— 

h ’ 
whence, 

wiZi3 ikfiZi M2I1 _ /W2123 , -M3Z2 - M2h\ 
~24~+_6_i" 3 l 24 + 6 + 3 / 

or, 
MlZl ^(Zl+k) ,M3?2_ WlZl3 ^23 

6 ' 3 ^ 6 24 24 ‘ 

Therefore, 

Mili-\-2M2(li-\-l2) — 
wih3 W2I23 

~4T' 

This equation expresses the theorem of three moments for a 

continuous beam subjected to uniform loads, the supports being 

on the same level. For use of the theorem see Art. 58. 

Conjugate-beam Method 

81. Beam Fixed at Both Ends; Load Distributed Uniformly. 

—The deflected beam is shown in Fig. 155(a). In Fig. 155(6) 

the beam is shown acted on by an equivalent force system which 

converts the beam into a simple beam subjected to end-moments 

Mo. The moment-diagram for the beam in Fig. 155(6), and hence 

also for the original beam, is shown in Fig. 155(c); the positive 

moment diagram of the vertical forces is a parabola the same as 

that for a simple beam, and the negative moment diagram of the 

end-moments is a rectangle. Further, since the beam has a con- 
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M 
stant cross-section, the -^-diagram has the same form as the 

moment-diagram. 

Now, as discussed in Art. 70, the conjugate beam for a fixed- 

ended “ given ” beam is a 
W lb. per ft. 

fnnnri W lb. per ft. 

amrm-rm 

(f>) 

beam with free ends, that is, 

M 
the -^j-diagram, acting alone 

as a distributed load on the 

conjugate beam, must hold the 

conjugate beam in equilibrium 

as indicated in Fig. 155(d), 

M 
and hence the -^-load diagram 

HI 

must be so adjusted that the 

sum of all the loads is equal 

to zero (2F' = 0, Art. 68); that 

M 
is, in Fig. 155(c), the -^-load 

of the parabolic diagram must 

be equal and opposite to the 

M , . „ . , .. Fig. 155.—Moments at ends of fixed 
wloa,d of the rectangular dia- beam. conjugate.beam method. 

, ^rfim Trrm^ 
if] 

A l c' (c) B 

2 

■p. Conjugate 

DM&, 
A[ 

M 
WW. 

b % 
id) \ 

gram. Hence 

whence, 

2 wl3 Mo 

3 SEI * 1 El’ 

Mo= wl2. 

Maximum Deflection.—The maximum deflection A of the 

given beam is equal to the bending moment M'c at the center of 

the conjugate beam. In finding M'c the load to the left of the 

center may be considered to consist of two parts: the rectangle 

ACQN (Fig. 155d) acting as an upward load, and the parabolic 

area NTQ acting as a downward load; these two areas are equal 

in magnitude since the beam is in equilibrium. Taking moments 

about C' we have, 
_ 1 Wt2 l l 2 1 wl2 l 3 l 

A~Mc 12 El'2 4 3 8 El 2 82 

wl4 __ Wl3 

384El 384A7* 
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82. Beam Fixed at Both Ends; Load Concentrated at Mid¬ 

span.—The deflected beam is shown in Fig. 156(a). A force 

system that would produce the same deflections as occur in the 

“ given ” beam is shown in Fig. 156(6), and the superimposed 

moment-diagram is shown in Fig. 156(c). The conjugate beam 

(Fig. 156d) for a fixed-ended “ given ” beam has free ends (see 
M 

Art. 70), and hence the -^-diagram must hold the conjugate 

M 
beam in equilibrium; that is, the total -^-load must equal zero 

El 
(XF' = 0, Art. 68). Hence, 

whence, 

l+~- ~ — -1 = 0 
El +2 4 El 1 

Mq — — 4PI. 

Fig. 156.—Moments ac ends of fixed Fig. 157.—Moment at fixed end of 
beam; conjugate-beam method. beam; conjugate-beam method. 

The maximum deflection A is equal to the bending moment 

M'c at the center of the conjugate beam. Thus, 

A = M'c = (moment ACQN—moment NTQ) 

= 1 Pl_l_ l___ll Pl_ l 11 
8 El 2 4 2 4 El 2 3 2 

J_PE 
192 El • 
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83. Beam Fixed at One End; Supported at Other End; 
Load Uniformly Distributed.—The deflected beam is shown in 

Fig. 157(a). The superimposed moment-diagram is shown in 

Fig. 157(6). 

Since the deflection and slope at the right end of the “ given ” 

beam are zero, the shear and moment at the right end of the 

conjugate beam must be zero, and hence the end is free (see Art. 

70); whereas, the left end of the conjugate beam has zero moment 

(M' = y = 0) but not zero shear (V' = 6), and hence is supported 

at the left end, and is subjected to the distributed ^-load as 
El 

indicated in Fig. 157(c). 

The value of Mo may be found by applying one of the equa¬ 

tions of equilibrium (2AF = 0). Thus if moments are taken about 

the left end of the conjugate beam the moment of the triangular 

area A'B'D plus the moment of the parabolic area A'ED must 

equal zero. Hence, 

1 Moj 2 2 IwE l__ 
2FJ 3H~3'8FJ 2 ’ 

whence, 

M0=~^wl2. 

Now R'i (and hence 6) may be found, if desired, from the other 

equilibrium equation (SF' = 0). 

84. Continuous Beam; Theorem of Three Moments.—Fig. 

158(a) shows two spans of a continuous beam subjected to dis¬ 

tributed loads; the supports are on the same level, and the beam 

has a constant cross-section. If, over the supports, hinges are 

introduced and then end-momenfcs, Mi, M2 and M3, are applied, 

as in Fig. 158(c), the beam will act in all ways as the original beam 

acts, provided that the value of Mi, M2, and M3 are the values 

of the bending moments at the supports of the original beam. 

The superimposed moment diagram for the beam in Fig. 

158(c) (and hence also of the original beam) is shown in Fig. 

M 
158(d), and the ^-diagram will have the same form as that of the 

El 
M 

moment-diagram. The ^-diagram is the distributed load on 

the conjugate beam (Fig. 158c); now the conjugate beam has 

hinges and no supports at the points corresponding to the sections 
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over the support of the original beam. This may be explained 
as follows: The deflection at the supports of the “ given ” beam, 
and therefore the moment at the supports in the conjugate beam, 
are zero; the slope of the given beam at a support may be different 
from zero (as indicated in Fig. 1586) but must have the same 

Fig. 158.—Moments at supports of continuous beam; conjugate-beam 
method. 

value immediately to the left and to the right of the point since 
the beam is continuous over the support, and therefore the shear 
in the conjugate beam may have a value other than zero but 
must have the same value immediately to the left and the right 
of the point. An unsupported hinge is the simplest arrangement 
by which this condition can be established. 

By expressing the fact that the ^-load must be so adjusted 
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that the reaction of the support (B say, Fig. 158e) is zero, the 
theorem of three moments is found as follows: Let it be assumed 

M 
first that all the -^-loads are acting downward, the reaction at 

jbi 

B then would be such that its moment about A would be equal 
M 

to the moment, about A, of the 777-loads on span h, and its moment 

M 
about C would equal the moment about C of the -^j-loads on h. 

Therefore, writing the expression for the reaction and equating it 
to zero, we have 

1/2 wih2 7 h . 1 ,, 7 27 , 1 ,, 7 17 \ 

ii\3* 8 'll' 2+2M21'31+2¥l l'3 V 

I/2W2I22 7 ^2 1 11/ 7 27 . 1,, 7 17 \ n 

+fe(3 ~8 2' 2+2J^2 2'3 2+2^3 23 2) _0, 
whence 

Mih+2M2 (h+h) +Mzl2 = - iwih3 - iw2l23, 

which expresses the theorem of three moments. For use of the 
theorem see Art. 58. 

Note.—The problems in Chapter VII may also be used in connection 
with this chapter. 



CHAPTER X 

COMBINED AXIAL AND BENDING LOADS. ECCENTRIC 

LOADS 

85. Introduction.—In the preceding chapters stresses caused 

by axial, torsional, and bending loads were found when the loads 

acted singly. Members of many structures and machines, how¬ 

ever, are subjected to loads of two or more of these types (or the 

actual loads may conveniently be resolved into loads of two or 

more of these types), and the unit-stress developed at any point in 

the member may frequently be found by assuming that the loads 

act independently and hence each load is assumed to produce the 

same unit-stress that it would produce if it were the only load acting 

on the member; these unit-stresses may then be combined, if the 

stresses are within the proportional limit, to obtain the actual unit- 

stress. This principle, called the principle of superposition, will be 

used in this chapter in determining the normal (tensile or com¬ 

pressive) unit-stress at a point in a member when the member is 

subjected to combined axial (tensile or compressive) and bending 

loads, and also in determining the shearing unit-stress when the 

member is subjected simultaneously to a central shearing load 

and a torsional load. 

86. A Beam Subjected to an Axial End Load.—In Fig. 159(a) 

is represented a simple beam of length l feet subjected to a uni¬ 

formly distributed transverse load of w pounds per foot and a com¬ 

pressive axial load of Q pounds at its ends. Let it be required to 

find the maximum normal (tensile or compressive) unit-stress on a 

normal cross-section of the beam. The beam will be assumed to 

be short so that the deflection of the beam may be neglected with¬ 

out introducing serious error in the results, and hence the load Q 
may be assumed to be an axial load for each cross-section of the 

beam. Further, the weight of the beam is assumed to be negli¬ 

gible in comparison with the other loads on the beam. 

184 
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The maximum axial unit-stress will occur at the mid-section 
since the unit-stress due to the transverse bending load is maxi¬ 

mum at the mid-section and the direct stress due to Q is the same 
for all sections. Now as indicated by the free body diagram of 

the left half of the beam in Fig. 159(6), if Q were the only force 
acting, the stress would be uniformly distributed on the cross- 

sectional area a, the unit-stress at any point in the area being si. 

The total stress would be asi and would be equal and opposite to 
Q since it would hold Q in equilibrium. Hence, 

Q = as\ or si=—. 
a 
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Fig. 159.—Stress in beam subjected to end-loads; deflection neglected. 

If, on the other hand, the bending loads were the only forces acting, 
the bending moment M at the mid-section (equal to \wl2, Fig. 92) 

would develop the resisting moment S-~- as shown in Fig. 159(6), 

the fiber unit-stress s2 varying directly as the distance of the fiber 

from the neutral axis provided that its value does not exceed the 

proportional limit of the material.1 And since the resisting 
moment holds the bending moment in equilibrium, the two 

moments are numerically equal. Hence, 

s2I Me 
M = — or s2 = —• 

c I 

The normal unit-stress at any point of the mid-section then, 

according to the principle of superposition, is the algebraic sum of 

the unit-stresses caused by the loads acting separately; the max¬ 

imum unit-stress is a compressive stress and occurs on the top 

fiber; its value is 
S = Si + S2, 

_Q,Mc 
a' I ' 

1 For other limitations and assumptions see Art. 43. 
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The unit-stress on the bottom fiber may be either tensile or com¬ 
pressive according as S2 is larger or smaller than s\. As shown in 
Fig. 159(6), $2 is larger than si, therefore, the unit-stress on the 
bottom fiber is a tensile stress, and the surface of zero fiber-stress 
is some distance below the centroidal plane of the beam. Further, 
if the load Q were a tensile load the maximum unit-stress would 
occur on the bottom fiber and would be a tensile stress. 

Deflection of Beam Not Negligible.—If the deflection of the 
beam is not negligible, the load Q (Fig. 160a) cannot be considered 
to be an axial load with respect to the mid-section (or any other 
cross-section except the end sections, see Art. 3 and Fig. 2). Let 
A denote the deflection of the axis of the beam at the section on 
which the stress is to be found (in this problem the mid-section). 

'll) IK nor ft 

Q 

(a) 
Fig. 160.—Stress in beam subjected to end loads; deflection considered. 

Now if two equal opposite and collinear forces Qi, Q2 (each equal 
to Q), are applied to the beam as shown in Fig. 160(6), the force Q 
will be resolved into a force Qi, which is axial with respect to the 
mid-section, and a couple having a moment QA; these two forces 
do not change the stresses developed on the mid-section, but 
simply modifies the force system so that the equations (P = as 

sl\ 
and M=—\ already developed in the preceding chapters can be 

made to apply to this problem. Thus, since Qi passes through the 
centroid of the mid-section, the unit-stress si due to Qi alone is 
constant over the section and is obtained from the equation 

Qi = Q = asi, 

as indicated in Fig. 160(6). The other forces constitute a bending 
moment composed of the cross-bending moment M, as in the pre¬ 
vious problem, and the moment QA. The total bending moment 
is therefore, Af+QA and is held in equilibrium by the resisting 

moment —. Therefore, 
c ’ 
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as indicated in Fig. 160 (b). Thus the maximum unit-stress s is, 

S = Sl + S2, 

= ^+(M+QA)|.(131) 

But since the value of A depends on the value of the total 

bending moment (M-\-QA) and the value of the bending moment 

depends in turn on the value of A, a method of approximation in 

solving equation (131) is, as a rule, the most convenient method. 

Thus, the value of A that would be caused by the cross-bending 

moment, M, alone is found first (equal in this problem to 
384 El 

Art. 46); this value of A is then used in the expression M-\-QA 
and this new value of the total ending moment is used to find a 

closer approximation to the value of A. This operation may be 

repeated as many times as desired. 

ILLUSTRATIVE PROBLEM 

Problem 153.—In Fig. 161(a) is shown a wall bracket, the horizontal 
boom BC being a 7-in. 15-lb. I-beam. The beam is pin-connected to the post 

BE at B and to the rod AC at C. If the load P is 4900 lb. find the maximum 
fiber unit-stress in the I-beam, assuming that the weight of the beam is 
negligible. 

Solution.—Deflection Neglected.—The forces acting on the I-beam are 

shown in Fig. 161(6). The normal stresses at the mid-section due to the 
end;load Bx and the cross-bending loads are shown in Fig. 161(c). The value 
of Bx and of Cx is equal to the horizontal component (^-component) of the 
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tension in the tie rod AC, and this tension may be found by applying the con¬ 
ditions of equilibrium either algebraically or graphically to the forces acting 
on the pin at C or on the post DE; it is assumed that the student is famil¬ 
iar with methods of finding the forces acting on the members of pin-connected 
structures. The value of the tension in the rod is found to be 4600 lb. and its 
^-component is 3920 lb. Therefore Bx equals 3920 lb. Further, from a steel 
handbook the area a of the cross-section of the I-beam is found to be 4.42 
sq. in. and the section modulus I/c is equal to 10.4 in.? 

As indicated in Fig. 161(c) the compressive unit-stress, s, at the top of the 
I-beam is 

$ = Si+S2 

Bx PI c 

~ a +4 I 

3920 4900X8X12 1 

~4.42+ 4 X10.4 

= 888+11,300 

= 12,200 lb. per sq. in. 

Deflection Not Neglected.—The deflection A caused by the transverse forces 
alone is (Art. 47) 

_J_PZ_3_ 1 4900(8-12)3 

“ 48 ~EI ~ 48 30,000,000 -36.4 

= 0.0825 in. 

When the beam deflects, the load Bx has a moment BXA with respect to 
the mid-section and, as explained above, the bending moment is M-\-BxA. 
Thus the compressive unit-stress on the top fiber of the beam is 

S = Si+S2, 

1 
= 888+11,300+4900 • 0.0825 • 

= 888+11,300+31.2'. 

Thus, very little error is introduced in this problem by neglecting the deflec¬ 
tion of the beam. 

87. Eccentric Longitudinal Load in Plane of Symmetry.— 
In Fig. 162(a) is represented a short 2 compression member acted 

2 The effect of an eccentric load on a long compression member (column) 
in which the deflection of the member must be considered, is discussed in 
Art. 104. 
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on by an eccentric load P in a plane containing an axis of sym¬ 

metry 3 of each cross-section of the member, the amount of the 

eccentricity being denoted by e. Let it be required to find the 

maximum unit-stress developed on any normal cross-section, a, 
of the member. 

The force P may be resolved into an axial load Pi (equal to P) 
and a couple having a moment Pe (or P2e since Pi = P2 = P) with¬ 

out affecting the stresses developed on the section (Fig. 162t). 

Fig. 162.—Stress due to eccentric load in plane of symmetry. 

Now if Pi were acting alone it would cause a constant unit-stress 

si on the area a such that, 

Pi = P = asi. 

And, if the forces P and P2 were acting alone their moment Pe 

would cause the resisting moment (Fig. 1616) such that 

3 The stress caused by an eccentric load that does not act at a point on an 

axis of symmetry or principal axis, is discussed in Art. 88. All axes, however, 

are principal axes for a member having a square or circular cross-section; 

that is, the moments of inertia with respect to all axes in the plane of the area 

passing through the centroid of a square or circular area are equal. 
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The combined effect of the axial force and couple is to produce a 

maximum compressive unit-stress $ such that 

S = Si + S2 

PMc 

a I 

_P .Pec 

~a~T 

and the minimum stress is ——j-. Or, since I may be expressed 

by the equation I— ak2 in which k is the radius of gyration of the 

area a with respect to the centroidal-axis, the unit-stress at any 

point whose distance from the centroidal axis is c may be found 

from the equation 

in which s must not exceed the proportional limit of the material. 

Limitation on Eccentricity to Prevent Tensile Stress.—If the 

unit-stress S2 at B (Fig. 1626) due to the moment Pe is greater 

than the unit-stress Si due to the axial load Pi, the resulting 

normal unit-stress at B will be a tensile stress. If, then, a tensile 

stress is to be avoided, as is usually desired in brittle material 

such as concrete, brick, cast iron, etc., which are relatively weak 

in tension, the value of e should not be greater than that found by 

equating S2 equal to s\. Thus, 

Pec = P 

I a’ 

or 
Pec = P 

ak2 a’ . 

6 c * 

Therefore, a short compression member will not be subjected 

to a tensile stress if the eccentric load acts on an axis of symmetry 

k2 
of the cross-section at a distance not greater than — from the cen- 

c 

tral axis of the member. 
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If the member has a rectangular cross-section the value — is 
c 

ib or where b and h are the dimensions of the cross-section. 

This fact is expressed by the common rule that in the design of 

masonry structures the load should not lie outside the middle- 

third of the central axes of a rectangular cross-section. If the 
k2 

cross-sectional area of the member is circular the value of — is 
c 

\d, where d is the diameter, and hence the load should not lie out¬ 

side the middle-fourth of any diameter of the section if tensile 

stress in the member is to be avoided. 

(In each of the following problems the load lies in a plane of 

symmetry of the cross-section of the area on which the stress is to 

be found.) 

ILLUSTRATIVE PROBLEM 

Problem 154.—The machine member shown in Fig. 163(a) is acted on by 

a force P of 3000 lb. Find the maximum normal unit-stress on the area of 

the section AB at the wall. The dimensions of the cross-section of the bar 

at section AB is f in. by 3 in. 

Solution. The load P may be resolved in two components, a cross-bending 

load Pv and a longitudinal eccentric load Px (Fig. 1636); and Px may be 

resolved further into an axial load P" and a couple having a moment Pxe, 

by introducing the two equal opposite and collinear forces P' and P", each 

equal to Px, as indicated in Fig. 163(6). 
Now since P" is an axial load with respect to the section AB, it would, if 

acting alone, cause, and be held in equilibrium by, a total stress as i, the unit- 

stress Si being constant over the area a of the section as indicated in Fig. 

163(6). And the couple Pxe, if acting alone, would develop a resisting moment 

— equal to the moment (Pxe) of the couple as shown in Fig. 163(6). Again 
c 

s3J 
the cross-bending load Pv would develop a resisting moment — equal to 

the moment (Pvl). The shearing stress on the area is neglected in this dis¬ 

cussion. 
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The normal unit-stress on the top fiber at A, then, is 

= —Si —S2+S3 

P cos 30° P cos 30°-1.5-1.5 P sin 30° •12-1.5 

2I5 ST®5 + tV i-(3)8 

2600 2600-2.25 , 1500-18 

~~ ~ 2.25 L69 1 1.69 

= -1150-3460 + 16,000 

= 11,390 lb. per sq. in., tensile stress. 

And at B the unit-stress is, 

Sb= —S1+S2—S3 

= -1150+3460-16,000 

= —13,690 lb. per sq. in., compressive stress. 

PROBLEMS 

155. In Fig. 164 is shown a machine member having a rectangular cross- 

section 1 in. by 4 in. It is acted on by a force P2 of 18,000 lb. and a force Pi, 

the action lines of which are shown in the figure. Find the value of Pi if 

the maximum tensile unit-stress is 20,000 lb. per sq. in. Ans. P1 = 8270 lb. 

156. What value should e, in Fig. 165 have in order that the unit-stress 

at the top fiber within the middle third of the beam, due to the load Q shall be 

equal (and opposite) to the unit-stress due to the cross-bending loads; Q = 9P 

157. The frame shown in Fig. 166 is used for small riveting, punching and 
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stamping machines. Find the unit-stress developed at A and at B when the 
load P is 2000 lb. 

Ans. s^ = 1470 lb. per sq. in., tension; sb = 1870 lb. per sq. in., compression- 

158. The inclined beam shown in Fig. 167 carries a load P of 5000 lb. at 

the mid-span. If the length, l, is 10 ft., what is the maximum compressive 

unit-stress developed in the beam? 

Ans. $ = 1080 lb. per sq. in. 

159. The post DE of the wall bracket shown in Fig. 161(a) is made of 

two 6-in. 15.5-lb. channel sections latticed together, the 6-in. dimensions being 

parallel to the direction of the boom BC. Find the maximum compressive 

unit-stress on a section of the post just beneath the section passing through A. 

Assume the load to be at the outer end of the boom BC. 

160. A cast-iron machine frame shown in Fig. 168 is subjected to a load P 
of 8000 lb. The area of the cross-section at AB is 40 sq. in. and the centroidal 

axis YY is 6 in. from the outer edge of the section. The moment of inertia 

of the area with respect to the centroidal axis is 400 in4. Find the maximum 

tensile and compressive unit-stresses on the section AB. 
Ans. St = 1960 lb. per sq. in., tension; sc = 2440 lb. per sq. in., compression. 

161. The small crane shown in Fig. 169 has a clear swing of 28 in. Find 

the load P which will cause a maximum compressive unit-stress of 9000 lb. 

per sq. in. on the inner edge at B. 

162. The open link shown in Fig. 170 is made 

of a steel bar having a diameter of 2 in. If the 

tensile unit-stress at A is 18,000 lb. per sq. in. what 

is the value of the load P? 

Ans. P = 1090 lb. 
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163. A timber post having a cross- 
section 6 in. by 6 in. supports one end 
of an inclined beam as shown in Fig. 
171. The load P is 4000 lb. Find the 
unit-stress at points A and B of the 
section AB of the post. 

88. Eccentric Load Not in Plane of Symmetry.—In the pre¬ 

ceding article the action line of the resultant longitudinal load 

passed through a point on an axis of symmetry of the area on which 

the stress was desired. Now, as stated in Art. 43, in using the 

si 
flexure formula M=— the neutral axis is assumed to be perpen- 

c 

dicular to the plane of the loads, but this is true only when the loads 

lie in a plane of symmetry.4 

If the load P (Fig. 172a) does not lie in a plane containing an 

axis of symmetry it may, as in the preceding article, be resolved 

into an axial load Pi (equal to P) and a couple, P and P2, having 

a moment Pe, and this couple may be further resolved into two 

component couples in planes containing the axes of symmetry or 

principal axes, OX and OF; the stress due to each component 

couple may then be found from the ordinary flexure formula. 

Thus, the moment of the component couple in the plane contain¬ 

ing the axis OX is Pe cos 8 or Pex (Fig. 172a), the forces of this 

couple being represented by P2 and P3 in Fig. 172(b), and the 

moment of the component couple in the plane containing OF is 

Pey and the forces of this couple are P4 and P5. These five 

forces, each equal to P, will produce the same unit-stress at any 

point in a section, such as the section ABCD, as the original force 

4 The more general statement is that the loads must lie in a plane contain¬ 
ing a principal axis of inertia of the cross-section; an axis of symmetry is 
always a principal axis; however, a section always has a principal axis even 
though it may not have an axis of symmetry. 
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P, and the normal unit-stress at any point in the section is the 

algebraic sum of the unit-stresses produced by the axial load Pi 

and the two bending couples Pz, Ps, and P4, P5. 

Fig. 172.—Eccentric load not in plane of symmetry. 

The maximum unit-stress occurs at C and is 

S = Si + S2-fS3 

P I PC%Cx I PCyCy 

For other points in the area a either the second or the third 

term or both may be negative. Thus the unit-stress at a point E 

in the quadrant O'A (Fig. 1725) is 

s = .(132) 
Cl Iy lx 

Kern of a Section.—It is evident that the least value of s will 

occur at A and its value will be given by equation (132) when 
7 7. 

x = - and y=7:, and it will be a tensile stress if the sum of the 
2 2 

p 

last two terms is greater than —. If a tensile stress is to be avoided 

therefore, the values of ex and ey can not be greater than those 

found from the equation 

P 

a’ 
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or 

whence. 

Sy2 _ 1 
bh’ 

@x i 1 
6+F=6 °r + ^ ’ 

which is the equation of a straight line that intersects the axis 

OX at a distance ^ from 0. and the axis OY at a distance § from 0 
6 6 

(Fig. 173). Similar limits occur in the other quadrants and hence 

the resultant load on the member must 

pass within the shaded area shown in 

Fig. 173 if tensile stress in the member 

is to be avoided. 

The area within which the resultant 

load must pass to avoid tensile stress on 

a section is frequently called the core, 

kernel, or kern of the section. Thus for 

a rectangular section the kern is a rhombus the diagonals of 

which are the middle-thirds of the principal axes of the section. 

<-1 )-» 

a°4) 
- 

O* 

Fig. 173.—Kern of a 

section. 

PROBLEMS 

164. A short rectangular timber having a section 6 in. by 8 in. is subjected 

to a longitudinal eccentric compressive load of 10,000 lb. The action line 

of the load passes through a point in each section 3 in. from the 6 in. side and 

2\ in. from the 8-in. side. Find the unit-stress at each corner. 

Ans. sA= 56 lb. per sq. in. T., Sjg = 156 lb. per sq. in. C. 

5(7 = 468 lb. per sq. in. C., sd = 264 lb. per sq. in. C. 

165. The resultant normal pressure, P, on top of a concrete base having a 

square cross-section, a, acts at the center of one quadrant of the square. Will 

tensile stresses occur in the base? If so, find the maximum tensile and com¬ 

pressive unit-stress that will be developed, assuming the values of P and a to 

be 140,000 lb. and 4 sq. ft., respectively. 

89. Eccentric Loads on Riveted Connections.—Examples of 

eccentric shearing loads are found frequently in riveted joints. 

Whenever feasible, however, eccentric loads should be avoided; 

that is, the action line of the resultant force to be transmitted 

through the rivets should pass through the centroid of the total 

rivet shearing area. Care in securing this condition, however, fre- 
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quently is not given the attention it merits. The shearing stresses 

in riveted joints subjected to eccentric loads may be found as 

follows. 

Let it be required to find the shearing unit-stress in each 

rivet in the riveted joint shown in Fig. 174(a). A force P having 

the eccentricity e is transmitted from the member A to the gusset 

plate B, and from the gusset plate through the four rivets to the 

member C. The shearing area of each rivet will be denoted by a, 

the diameter by d, and the distances of the centers of rivet areas 

from the centroid, G, of the total shearing area by h, I2, etc. 

Fig. 174.—Shearing stress in rivets due to eccentric load. 

The load P may be resolved into a load P\ (Fig. 1746) acting 

through the centroid of the total shearing area and a twisting or 

torsional couple Pi, P2 having the moment Pe. The central shear¬ 

ing load Pi if acting alone would develop the same shearing unit- 

stress, s's, on each of the rivet areas (or rather this is the assump¬ 

tion usually made, see Art. 13). 

The resisting stress that holds Pi in equilibrium, then, is 4a s'8. 

Thus, 
p 

Pi = 4as's or s's = —, 
4a 

as indicated in Fig. 174(6). 

And, if the couple Pe were acting alone it would develop a 

/s" J \ 
resisting moment (——, Art. 26 ),5 the shearing unit-stress in the 

5 In Art. 26 it was stated that — is the expression for the resisting moment 
c 

only for a solid or hollow cylindrical shaft. The rivet areas, however, may 

be transformed into annular areas having radii l\ and 12, similar to the cross- 

section of two concentric hollow cylindrical shafts. 
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rivets varying directly as the distances of the rivets from the cen¬ 

troid G, as shown in Fig. 174(6). This resisting moment holds 

the moment Pe in equilibrium. Hence, 

Pec 

~T' 

The shearing unit-stress on the bottom rivet, then, is 

Ss = S 8 + 5 S 

P Pec 

a J~’ 
(133) 

in which c is the distance from G to the rivet on which the stress 

is desired (equal to l2 for the bottom rivet), and J is the polar 

moment of inertia of the total shearing area of the rivets with 

respect to an axis passing through G. 

Since the diameters of the rivet areas are small in comparison 

with the distances of the rivets from G, the value of J is, with 

slight error, the sum of the products obtained by multiplying 

each rivet area by the square of the distance of its center from G. 

Thus, 

J = 2a(h2+l22) 
and hence 

Pg = ZO£_s .(134) 
12 

Instead of obtaining the resisting moment from the expres¬ 
s'^/ 

sion ——, it may also be found as the sum of the moments, with 
c 

respect to G, of the total shearing stresses on the rivet areas. Thus 

if s"s denotes the shearing unit-stress on the rivets farthest from G, 

and s"8l on the rivets nearest to G, we have 

Pe = 2[as" sh+as' sih] 

= 2^as//s?2+a^s//s^i"|, 
• / G // 

since s si = ts s 
*2 

=2 
12 

which is the same as equation (134). 
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PROBLEMS 

166. The diameter of the rivets in the joint shown in Fig. 175 is f in., 

and the load P is 4000 lb. Find the shearing unit-stress in the top and bottom 

rivets. Ans. s = 6750 lb. per sq. in. 

167. The load P transmitted through the joint shown in Fig. 176 is 5000 lb. 

and the diameter of the rivets is f in. Find the shearing unit-stress in the 

top and in the bottom rivet. 

168. Fig. 177(a) shows a commonly used joint in a riveted Pratt truss. If 

the joint is arranged as shown in Fig. 177(6) how much will the maximum 

shearing unit-stress in the rivets in the top chord A be decreased? All the 

rivets have a diameter of f in. The values of Pi and P2 are such as to produce 

a shearing unit-stress of 10,000 lb. per sq. in. in the rivets connecting the two 

members, B and C. to the gusset plate. (See Prob. 38.) 

90. Helical Spring. Stress Developed.—A helical or coil 

spring (Fig. 178a) is frequently used to resist an axial load P that 

lengthens or shortens the spring. The stress developed in the 

rod of which the spring is made is mainly torsional shearing stress* 
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The value of the shearing unit-stress in a spring made of rod having 

a circular cross-section may be found as follows: 

Let a section be passed through the rod at A (Fig. 178a) and 

the lower part of the spring be removed. The part above the sec¬ 

tion A is shown in Fig. 178(6). Further, let the load P be resolved 

into a force Pi (whose action line passes through the center of the 

section at A) and a twisting moment Pe, by introducing the twTo 

forces Pi and P2 (Fig. 1786) each equal to P. Now these forces 

(a) 

Fig. 178.—Stress in helical spring. 

(which produce the same stress on the section at A as does the 

original one force P) are held in equilibrium by the stresses on the 

section at A. If the force Pi were acting alone it would produce 

a resisting shearing stress that would hold Pi in equilibrium, and 

this direct shearing stress would be equal to as'8, as indicated in 

Fig. 178(6), a being the area of cross section of the rod, and s'8 

the shearing unit-stress. Hence, 

Pi = P = as'8 or 

Further, if the twisting moment Pe due to the couple P, P2 were 
s" J 

acting alone it would produce a resisting moment —on the area 

a which would hold the external or twisting moment in equilibrium 

as indicated in Fig. 178(6). Hence 

D s"8J 
Pe =-. 
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Now the direct shearing unit-stress s'8 in most springs is negli¬ 

gible in comparison with the torsional unit-stress s"8, and hence 

the chief unit-stress in the rod is due to torsion and its maximum 

value is 

„ _Pec 
* s— j , 

in which e is the mean radius of the coil, c the radius of the rod 

^equal to ^ where d is the diameter of the rod^ and J is the polar 

moment of inertia of the cross-sectional area of the rod 

Art. 162). 

The above expression then may be written 

Pe- 
„ _ 2_16Pe 

s 7rd4 7rds 

32 

' j _ 7T d4 

“32’ 

If, however, the direct unit-stress s'8 is not negligible, the 

maximum unit-stress on the area a will be the sum of s's and s"8. 

Thus 
P , 16Pe 

Ss = —h— 
a ird6 

(135) 

Deflection of Helical Spring.—The increase or decrease in 

length (called deflection) of the spring due to a given load P may 

be found as follows: 

If the shearing proportional limit of the material is not exceeded, 

the work done by the load, as it increases uniformly from zero to 

the value P, is stored in the material as stress (potential) energy, 

and further, if the stress developed is assumed to be due only to 

torsion, it follows that 

Work done in causing deflection = Work done in twisting the rod. 

Now the work done by the load in deflecting the spring is 

the product of the average value of the load j and the deflec¬ 

tion A. Similarly, the work done in twisting the rod through an 
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angle 6 is the product of the average value of the twisting moment 

/ T Pe\ 
(or — j and the angle of twist. Hence, 

iPA = iTe = iPed. 

A = ed. 
Therefore, 

But from Art. 28, the value of 6, is given by the equation, 

Pel 
6- 

EJ' 

Further, for a closely coiled spring, l = 2iren, approximately, where 

n is the number of turns. Hence, 

A — e 
Pe2iren 

~EJ~’ 

7rd4 
but, since the above expression becomes, 

A = 
64Pe3n 

~E~dF' 

(136) 

(137) 

If A is expressed in inches and P in pounds, then e and d are 

expressed in inches, and Es in pounds per square inch. If the 

shearing unit-stress developed in the bar is greater than the shear¬ 

ing proportional limit the above equation is not valid. 

PI 
The deflection, As, due to the direct shear is As=—^and hence 

dHj 8 

the total deflection is 

PI . Pe2l PI ( 

aE, ' EJ aEs{ 
total deflection = —pH— 

an § Hj 8fJ 

in which k is the polar radius of gyration of the section. 

(138) 

PROBLEMS 

169. A helical spring when compressed 4 in. must support an axial load of 

1600 lb. The diameter of the rod is f in., the mean diameter of the coil is 

3 in. and the working shearing unit-stress of the material (spring steel), is60,000 

lb. per sq. in. Find the number of coils required. Is the working stress 

exceeded? Ans. n = 21.2 coils. = 50,000 lb. per sq. in. 
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170. A helical spring made of steel rod \ in. in diameter with 5 turns is 

2.65 in. high and has an outside diameter of 1.35 in. Find the modulus of 

the spring, that is, the force required to stretch it an inch, assuming that the 

proportional limit of the material is not exceeded. 

Ans. Mod. = 965 lb., if deflection due to direct shear is neglected. 

171. A bronze helical spring is required to support 980 lb. when deflected 3 

in. Find a suitable diameter of the coil and number of turns if the diameter 

of the rod is £ in. and the working unit-stress not to exceed 50,000 lb. per sq. 

in. Es = 5,000,000 lb. per sq. in. 



CHAPTER XI 

COMPRESSION MEMBERS. COLUMNS 

91. Introduction.—A compression member is a bar (either 

solid or built-up, and, as a rule, approximately straight) subjected 

to an end-load (or loads) acting parallel to the axis of the bar. 

If the load acts through the centroid of the end section it is called 

an axial load; if not, it is called an eccentric load. But, an eccen¬ 

tric load is equivalent to an axial load and an end-moment or 

couple. The character of end-loads applied to compression 

members as used in engineering structures and machines depends 

largely on the type of end-connection used in the structure, and 

on the relative stiffness of the members connected. For example, a 

locomotive connecting rod, many members in certain types of 

bridges, etc., are connected by pins, and the end-load exerted on a 

compression member by the pin is mainly a single force, since the 

end-moment due to the friction of the pin is relatively small; 

whereas, most members in buildings, etc., are connected by rivets 

either directly or by means of an auxiliary piece such as a gusset 

plate, and a compression member may be subjected to an end- 

moment, in addition to a compressive load, due to the bending 

of a member (a beam, say) to which the compression member is 

attached. 

If a compression member is slender (relatively long), it is 

usually called a column; and if relatively short it is called a com¬ 

pression block or a strut. This chapter deals mainly with the 

strength of columns; there is, however, no definite slenderness 

that differentiates a column from a compression block. 

In the investigation of the stresses and deformations in a 

column there must be considered, as affecting the action of the 

column, certain conditions that may be neglected in the investiga¬ 

tion of the stresses and deformations in most other structural 

members. For example, in determining the stresses and deforma¬ 

tions in beams, tension members, torsional shafts, etc., when 

204 
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resisting loads, the member in question is considered to satisfy 

ideal conditions; namely, the body is considered to be straight, 

to be made of homogeneous material free from initial stresses, to 

be so constructed that it acts as a whole or as a unit, and to 

be subjected to loads having definitely known action lines. And, 

although it is known that such ideal conditions are never fully 

realized in these structural members, experiments and experience 

have shown that, in general, the results found from an analysis 

of the actions in the ideal beam, tension member, etc., are reliable; 

that is, the primary or significant action in the actual member is 

the same as that in the ideal body. But, the action in an actual 

column, as shown by experiments and experience, may deviate 

much from that in an ideal column. This fact may be stated in 

a somewhat different way as follows: In beams, tension members, 

etc., conditions that differ from those in the ideal members do not 

have more than a secondary effect on the stresses and deforma¬ 

tions in the beams, tension members, etc., whereas the similar 

conditions in a column may be of prime importance in determining 

the resistance of the column. 

Further, a quantitative measure of the effects of these con¬ 

ditions cannot, in general, be determined, and hence they render 

the analysis of column action less definite and satisfactory than 

that of beams, tension members, etc., and at the same time, cause 

a column to be a more critical member in a structure than most 

other structural members. 

A brief discussion of the actions and conditions that must be 

especially considered in a column, are given in the next article and 

also in Art. 97. 

92. Distinguishing Features of Column Action.—The funda¬ 

mental idea of column action is that of combined compression and 

bending, but the bending action in a column is accompanied by 

certain conditions that renders a quantitative measure of the bend¬ 

ing action less certain than that of the bending in a beam or in a 

member subjected to combined tension and bending, etc. The 

distinguishing features of column action may be stated briefly 

as follows: 

1. A straight column may bend or deflect as a whole when sub¬ 

jected to a supposedly axial end-load (Fig. 179a), the initial bend¬ 

ing being due to a slight initial or accidental eccentricity]1 of load- 

1 If the column bends there must be a bending moment to start the bend- 
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ing, and this deflection causes an increase in the moment-arm of 

the load, and hence increases the bending moment; the increased 

bending moment in turn increases the deflection, etc., tending to 

cause failure of the column by flexure or what is frequently called 

“ buckling.” This action is of special importance in the more 

slender columns and in the component parts of built-up columns. 

In a column, then, the bending moment may increase more 

rapidly than the load increases, whereas this undesirable condition 

does not occur in other structural members. For example, in a 

straight compression block the deflection may be assumed to be 

negligible and hence the initial bending moment, if any, due to 

initial eccentricity, etc., increases only as the load increases since 

the moment-arm of the load remains constant. Likewise, in the 

case of a beam, although the deflection of the beam may be greater 

than that of a column, the deflection has a negligible effect on the 

moment-arm of the load. Again, in the case of a tension mem¬ 

ber subjected to an eccentric load, the bending of the member 

causes the moment-arm of the load to decrease, and hence the 

bending moment increases even less rapidly than the load increases. 

2. By virtue of the action discussed under (1) above, an initial 

crookedness in a column as a whole (and all columns are more or 

less crooked) reduces the strength of a column more than a like 

crookedness reduces the strength of a beam, tension member, etc. 

3. Local kinks or bends in the component parts ot a built-up 

column, lack of homogeneity of material, initial stresses2 in the 

material, and poorly designed end-connections, may cause stresses 

and deformations in parts of a column greatly in excess of those 

assumed to exist in the corresponding ideal column, and these 

localized stresses and deformations, as a rule, reduce the resistance 

of the column more than similar localized stresses reduce the 

resistance of beams, tension member, etc. 

4. A variation in the position of the action line of a load on a 

column from that assumed in the ideal column, that is, the pres¬ 

ence of accidental or fortuitous eccentricities, cause, in general, 

a much greater increase in the stresses in a column than similar 

variations cause in the stresses in beams, in tension members, etc. 

ing; various conditions contributing to this bending are discussed later but an 

initial or accidental eccentricity may here be considered to be the chief cause 

of the initial bending. 

2 For causes of initial stresses see Art. 106 and 137. 
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Further, such fortuitous eccentricities are very likely to occur due 
to the actions of the end-connections. 

93. Slenderness Ratio.—The slenderness ratio for a column is 
a term that enters in all column formulas; it is the ratio of the 
length, l, of the column to the radius of gyration, r, of the cross- 
section with respect to the neutral axis, the neutral axis being the 
centroidal axis that is perpendicular to the plane in which the 
column bends or tends to bend. If the column is pivot-ended, 
that is, free to turn at its ends, it will bend in a plane perpendicular 
to the axis of the cross-section about which the moment of inertia 
is least, and r will be the least radius of gyration. Column sec¬ 
tions are frequently designed so that the moments of inertia of 
the section about the principal, axes are approximately equal; 
this condition, however, is not always desirable. 

94. Two Limiting Cases of Compression Members.—If a 
short solid compression block is subjected to an end load having a 
very slight eccentricity, the block may be assumed to be in pure 
compression since the bending action may be neglected. But if 
this block be assumed gradually to become longer (more slender) 
the tendency to bend becomes greater, and the bending cannot be 
considered to be negligible if the length of the member is greater 
than about ten times the least lateral dimension; that is, if the 
slenderness ratio is about 40. And, if the column is very slender, 
the resistance of the column is mainly its resistance to bending, 
the effect of the direct compression then being negligible. The 
slenderness ratios of compression members used in most engineer¬ 
ing structures and machines, however, are such that both direct 
compression and bending are of importance, and such members 
will be discussed after considering the two limiting cases of com¬ 

pression members. 
One limiting case of a compression member, then, is a com¬ 

pression block, and for such a member, when made of homo¬ 
geneous material and subjected to an axial load P, the formula is 

P = as, 

in which a is the cross-sectional area of the column and $ is the 

unit-stress at all3 points in the area. 

3 The variation of stresses over the cross-section in short built-up columns 

is discussed in Art. 106 and 137. 
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The other limiting case is that of a member so slender that 

bending or flexure is the only action that need be considered, and 

si 
hence the flexure formula, M = —, for such a column applies, the 

bending moment M at any section being Py. (Fig. 179a). Thus, 

Py 
si 

which states that the bending moment (Py) of the external forces 

about any section is held in equilibrium by the resisting moment 

of the stresses developed on that section. But the value of (?) 

■Py 

the deflection y in the equation corresponding to a given load P 

is unknown and hence the value of P that 

produces a given stress s cannot be found, since 

there are two unknown quantities in the equa¬ 

tion; in other words, the problem is statically 

indeterminate; but, as discussed in Chapter 

VII, the elastic curve equation offers another 

method for finding external forces. The expres¬ 

sion for the load that causes a slender column 

to bend as found from the elastic curve of 

the column was first obtained by Euler in 1757 

and is known as Euler’s column formula; it 

is derived in the following article. 

95. Euler’s Column Formula.—The prob¬ 

lem is to find the least value of an axial load 

P that will cause a column to bend. The im¬ 

portance of this value of the load lies in the 

fact that, due to the conditions stated in Art. 

92, a column fails by bending if the load is increased only a small 

amount above this value, and hence the least value of the load 

that causes a column to bend is also the maximum load the 

column can resist, unless the column fails by crushing of the 

material by direct compression before this value is reached. 

Now the method of obtaining this critical bending load is to 

assume that an ideal column is deflected by a lateral force 4 and 

that an axial load P is applied that will maintain this deflection 

Bending 

of slender column. 

4 An axial load could not cause an ideal column to bend. 
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after the lateral force is removed; a relation between the load and 

the deflection is then found from the elastic curve equation of the 

deflected column, and the limiting value of P found from the equa¬ 

tion, by expressing the fact that the deflection is indefinitely small, 

is the least value of P that will cause an ideal 

column to bend (or the maximum value that 

will not cause bending). 

In Fig. 180(a) is represented a slender 

solid column of constant cross-section; it is 

assumed to be straight, to be made of homo¬ 

geneous material free from initial stresses, 

and to be subjected to an axial end-load only, 

that is, no restraints occur at the ends and 

the weight of the column is neglected. Let 

the load P be such as to hold the column 

in the deflected position as shown in Fig. 

180(6). Now since bending is the only action 

here considered the equation of the elastic 

curve is the same as that of a beam; namely 

(see Art. 45), 

±EIW>=M’ 

Fig. 180. — Elastic 

curve of slender 

column. 

in which M is positive and equal to Py, and, if the origin of axes 

is chosen at the upper end of the column and the positive direc¬ 

tion of the x and y axes are chosen downward and to the right, 

d2v 
respectively, as shown in Fig. 180(6), then is negative (see 

Art. 45), and the above equation becomes 

. (139) 

This equation may be written 

d\ 

EI- 
dx 

= -Py, (139a) 

dy 
and if each side of the equation is multiplied by each side 

becomes an exact derivative of the form udu; namely, 

Tirfdy\ j/dy\ D , 
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Integrating, we have, 

®(D’— (140) 

dy 
Now simultaneous values of ~ and y are not known, and hence 

Ci cannot be expressed in terms of the known quantities E, I 

and l, but it may be expressed in terms of the maximum deflec- 

dy 
tion, A. Thus, since ^ = 0 when y = A, we have 

0=—PA2+Ci; whence Ci=PA2, 

and eq. (140) becomes 

EI{S)2=p(A2~y2).(141) 

This equation may be integrated after the variables are separated; 

the equation may be written as follows: 

dy 

Va2 
y—- l-p-dx 

Integrating, we have 

sin_1A=Vl/a:+C2’ 
or 

!-»■ (~\[mx+C2)' 

But y = 0 when x = 0 and hence C2 = 0. Therefore,5 

|P 
l = sinyJ^jx or y = A sin 

(142) 

\fr- • • 
(143) 

5 If the origin of axes is chosen at the center of the column as in Fig. 181, 

eq. (143) becomes 

y = A cos 

This may be shown as follows: The above derivation as far as eq. (142) is 
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Now if the deflection of a column is considered to decrease, the 

value of P required to maintain the deflection also decreases and 

attains its limiting (minimum) value when the deflection becomes 

indefinitely small, and since the column is then virtually straight, 

the vertical distance, x, between the ends of the column is equal 

to l. Therefore, the limiting value of P may be found by sub¬ 

stituting the values y = 0 when x = l in eq. 143. Whence, 

sin(w*)=0’ 

and hence the angle must be equal to tt or some integral 

multiple of 7r; as discussed in Art. 100, the value is tt for a column 

with pivoted ends and 47r for one with fixed ends, etc. Therefore, 

the minimum value of P for a column having pivoted ends is 

(144) 

An axial load P, then, less than that given by eq. (144) will not 

cause a column to bend, whereas a load greater than this will cause 

an actual column to bend, or will maintain an ideal column in a 

deflected position. And, although an ideal slender column may 

resist a somewhat larger load than this, the accompanying deflec- 

independent of the origin of axes. Now referring to Fig. 181 

and eq. (142), we have, y = A when z = 0, and hence 

sin _11=0+C2, whence C2=^ 

Therefore eq. (142) becomes 

or 

whence, 

Fig. 181. 
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tion becomes excessive 6 when P has a value only slightly greater 

than that given by eq. (144). Therefore, the value of P in eq. 

(144) is considered to be the maximum load an actual (structural) 

column can resist without failing by bending. It may fail, how¬ 

ever, by crushing before this value is reached, as will be discussed 

later. 
The fact that excessive deflections occur when P has a value 

close to the Euler load is clearly shown by testing a slender col¬ 

umn, such as a wooden airplane 

strut, and measuring the deflection. 

The load-deflection curve obtained 

is shown in Fig. 182; the deflection 

starts somewhat before the Euler 

load is reached due to slight eccen¬ 

tricities, etc., but at the Euler load 

the deflection increases rapidly to a 

value equal to A B with very slight 

increase of load, the stress in the 

column being less than the propor¬ 

tional limit until the deflection AB is 

exceeded. 

Since 7 in eq. (144) is equal to ar2 

(Art. 163) where a is the area of cross-section and r is the radius 

of gyration of the cross-section about the neutral axis, Euler’s 

equation may be written 

. 046) 

Fig. 182.— Relation between 

load and deflection for slender 

column. 

in which - is the slenderness ratio of the column. 
r 

Eq. (144) shows that the only property of the material on which 

P depends is the stiffness of the material, E (see Art. 144 and 145); 

therefore, a column made of high-carbon or special alloy steel 

would begin to bend, and hence fail, at the same load as would 

6 This fact is not evident from the analysis of the column action here pre¬ 

sented; it is shown by the true equation of the elastic curve, that is, the equa¬ 

tion obtained when the assumption that the length along the axis is the same 

as the length along the curye (dx = dl) is not made. The truth of the state¬ 

ment, however, is clearly shown by experiments as indicated by the results 

represented in Fig. 182. 
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one made of low-carbon steel, provided that the - were relatively 

large so that the columns would not fail by crushing before the 
Euler load is reached. 

ILLUSTRATIVE PROBLEM 

Problem 172. A column made of a 10-in., 35-lb. I-beam and two plates f 

in. by 11 in., as shown in Fig. 183, is 32 ft. long and is subjected, in a testing 

machine, to an axial load applied through spherical-sea ted bearings. Calcu¬ 

late the least radius of gyration, r, and the corresponding slenderness ratio, 

l 
—. Find the maximum load the column can resist, and also a working load 
r 

using a reduction factor (so-called factor of safety) of 3. 

Solution.—The moment of inertia of the cross-sectional area about the 

z-axis may be found as follows: Area of each plate, ai = 6.87 sq. in. A steel 

maker’s handbook gives: 

Hence, 

Area of the I-section = 10.29 sq. in. 

I* of the I-section = 146.4 in.4 

ly of the I-section = 8.5 in.4 

Fig. 183. 

Total area of cross- 

section, a = 24.03 sq. in. 

lx of the two plates = 2(/+ai<22), (see Art. 164) 

= 2 aid2 approximately 

= 2*6.87 • (5.3)2 

= 386 in.4. 

lx for whole area = 146.4+386 = 532.4 in.4 

Iy for whole area = 8.5+2(^M3) 

= 8.5+2(1Vf) (11)> 

= 8.5+138.6 = 147.1 in.4 

Since Iy is smaller than Ix the column will bend so that the y-axis is the 

neutral axis, that is, in a plane perpendicular to the y-axis. 

The least radius of gyration, r= —=x / 2.47 in. Therefore, 
\ a \24.03 

l 32X12 

r ~ 2.47 
= 155.5, 

and this value is sufficiently large, as discussed in the next article, to allow 

the column to bend before failing by direct compression. 
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Hence, 

,, . , , P **E 9.87X30,000,000 100Knl, 
Max. unit-load = — = —7— =- _  -= 12,250 lb. per sq. in. 

a l l\2 (155.5)2 

Working load = 

P = 12,250X24.03 = 294,200 lb. 

294,200 
= 98,100 lb. 

96. Graphical Representation of Formulas for Ideal Columns.— 

As already noted, the maximum axial load P that an ideal column 

having a very small slenderness ratio (a compression block) can 

resist depends on the compressive strength, s, of the material and 
p 

the cross-sectional area a the equation being — = s, whereas the 

maximum load that a slender column can resist depends on the 

stiffness, E (not the strength), of the material and on the slender¬ 

ness ratio in addition to the area a; the equation being 

P 7T2P 

Now the results of tests of axially loaded columns agree approx¬ 

imately with the calculated values from the above equations when 

the columns have small and large values, respectively, of X Thus, 

if a series of ideal columns were made of one kind of material but 

with different slenderness ratios, and were tested to failure by 

applying axial loads, the columns having small values of - (less 

than about 40) would fail by direct compression when the com¬ 

pressive unit-stress in the material reached the ultimate com¬ 

pressive strength of the material; the maximum useable com¬ 

pressive strength of ductile material in columns, however, is the 

yield point of the material since at this stress plastic flow of the 

material occurs and the column fails to perform its structural 

function even if total collapse does not result. But the columns 

having large values of - would fail by buckling when the unit-load 
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— is slightly greater than that given by Euler’s formula; the unit- 

stress in the column when the buckling starts being less than the 

proportional limit of the material. 

p 
If, then, values of — that cause failure are plotted (Fig. 184) 

as ordinates and the corresponding values of - as abscissae the 

P 
column formula — = s is represented by the horizontal line AB, 

and Euler’s equation is represented by the curve CBD. 

An ideal column 

having an ^ greater 

than that represented 

by the abscissa OB' 

(Fig. 184) fails by bend¬ 

ing, and an ideal column 

having a slenderness 

ratio less than this crit¬ 

ical value fails by the 

yielding of the material 

in direct compression 

if the material is duc¬ 

tile, or by crushing or 

diagonal shearing of the 

material if the material 

is brittle. 
The graph representing the column formulas for ideal columns 

is, therefore, the curve ABD of Fig. 184; the part BC of the 

Euler curve has no physical meaning, since the column would fail 

by crushing before a load represented by an ordinate to BC could 

be applied. 

Fig. 184.—Graphical representation of ideal- 

column formulas. 

ILLUSTRATIVE PROBLEM 

Problem 173. Find the critical value of corresponding to OR' in Fig. 184, 
r 

for an axially-loaded pivot-ended ideal structural-steel column, 

Solution.—The yield point of structural steel is about 40,000 lb. per sq. in. 
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and # = 30,000,000 lb. per sq. in. Now — as found from the two column 
a 

formulas are equal when - has the value OB' (Fig. 184), and hence, 
r 

That is, 

whence, 

P 

~a~S~ [1 

2 E 

40,000 = 
7T2 X 30,000,000 

Therefore, an ideal axially-loaded pivot-ended structural-steel column would 

fail by buckling if its slenderness ratio were greater than about 86. Tests 

of actual pin-ended steel columns, however, show that Euler’s equation is 

l 
applicable only when - is greater than about 120, for reasons discussed in 

r 

Art. 92 and in the following articles. 

PROBLEMS FOR ARTICLES 96 AND 96 

l 
174. Find the least value of — for an ideal pivot-ended oak column that 

r 

will fail by bending when subjected to an axial load. Assume the following 

values for the ultimate compressive strength su, and modulus of elasticity: 

sm = 8000 lb. per sq. in., # = 1,500,000 lb per sq. in. 

175. A 3-in. by 3-in. by \ in. wrought iron angle 15 ft. long was tested by 

the Pencoyd Steel Co., spherical seated bearings at the ends being used. It 

failed when subjected to an axial unit-load of 2650 lb. per sq. in. What is the 

l 
— for the column? Calculate the maximum unit-load the column would be 
r 

expected to resist. (# = 25,000,000 lb. per sq. in.) 

I ' P 
Ans. — = 310; — = 2560 lb. per sq. in. 

r a 

176. Design by Euler’s formula, a square pivot-ended timber column 20 

ft. long to resist an axial load of 60,000 lb. Use a working load equal to £ of 

the given load; assume # = 1,500,000 lb. per sq. in. 

177. What is the ratio of the strength of an ideal slender solid cast-iron 

column 6 in. in diameter to the strength of a slender hollow cast-iron column 

having a wall thickness of 1 in., the areas of cross-section and the lengths of 

the two columns being equal? Ans. 9 to 41. 
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97. Methods of Obtaining Formulas for Columns Having 
Intermediate Slenderness Ratios.—The results of many tests 

of columns show that the formulas represented in Fig. 184 are 

substantially correct for small and large values, respectively, of 

- but for intermediate values of ^ (corresponding to the part of 

p 
the curve between E and F say) the test results for - fall below the 

p 
curve, the cause of the lower values of — being due to the con¬ 

ditions stated in Art. 92. Now the columns used in engineering 

structures and machines have these intermediate values of and 
r 

the conditions stated in Art. 92 have, in general, a relatively 

greater influence on the strength of columns with intermediate 

slenderness ratios than on columns with either small or large 

values of Further, as noted in Art. 91, it is practically impos¬ 

sible to obtain a rational column formula that gives quantitative 

expression to the influences of these conditions, and hence 

formulas for columns of intermediate slenderness ratios are 

always either partly or entirely empirical. The main methods 

that have been used for developing such formulas are as 

follows: 

1. To assume that the conditions stated under (2), (3) and (4) 

of Art. 92 will cause the column to bend as a whole when subjected 

to an axial load P, the maximum bending moment, at the center 

of the column, being PA, where A is the deflection of the column. 

The maximum stress in the column is considered to be the sum of 

the direct compressive stress and the bending stress due to the 

moment PA. The value of the deflection, being unknown, is 

eliminated from the equation by assuming that the relation 

between the stress and deflection in the column follows the same 

law as does stress and deflection in a beam. The widely used 

Gordon-Rankine formula, discussed in Art. 98, is obtained by this 

method; it must be regarded as essentially an empirical formula, 

for, although the statement that the stress in the column, is due 

to combined direct compression and bending is essentially correct, 

the assumption made as to the relation between stress and deflec¬ 

tion is untenable; and further, the quantitative measure of the 
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influence of the conditions stated in Art. 92 on the stress in the 

column is determined from experimental results. 

2. To determine from test data an equation which respresents 

the average of test results without any attempt at a rational ana¬ 

lysis of column action. This method gives purely an empirical 

formula; the widely used straight-line formula discussed in Art. 

99 is obtained in this way. 

3. To assume that the combined effects of the conditions stated 

in Art. 92 are equivalent, in producing stress, to a eccentricity, e, 

of loading, called an equivalent eccentricity. The bending moment, 

then, after the column bends is P(e+A) instead of PA as used in 

Euler’s equation. An expression for P is then found, from the 

elastic curve equation, which contains the maximum unit-stress 

in the column and the equivalent eccentricity, e; a value for e being 

chosen so that the formula is made to agree with experimental 

results. This method leads to a modified Euler formula called 

the secant formula which is discussed in Art. 105. 

98. Gordon-Rankine Formula.—As already noted, an ideal 

column subjected to an axial load would not bend until the Euler 

load is reached, but the deviations from these ideal conditions may 

be assumed to be equivalent, in pro¬ 

ducing stress, to an initial crooked¬ 

ness or bend in the column as a whole, 

the total deflection at the center after 

an axial load P is applied being A (Fig. 

185a). The unit-stress, then, in the 

column is due to direct compression 

and bending. 

The maximum value of the unit- 

stress is found as follows: The maxi¬ 

mum stress occurs on section AA 

(Fig. 185a)' and the stresses on this 

section must hold the external force 

P in equilibrium. Now, by introduc¬ 

ing two equal and opposite forces, 

Pi and P2, each equal to P, the force 

P may be resolved into a force Pi 

(Fig. 1856) acting through the cent¬ 

roid of the central section AA, and a bending couple PA. If the 

force Pi were acting alone the unit-stress s 1 developed on the area 

Fig. 185.—Stress in Column. 
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a of the section AA would be uniformly distributed over the area, 

and hence 

D P as\ = P or s i=—. 
a 

And if the bending couple PA were acting alone, a resisting moment 

— would be developed, the unit-stress varying as shown in Fig. 

185(6); this resisting moment would hold the external moment 

PA in equilibrium, and hence 

PAc 
or s2=-j. 

The actual unit-stress, then, at any point of the area, would be 

the algebraic sum of the unit-stresses due to Pi and to PA. Hence 

the maximum unit-stress s is 

S = Si+S2 

P PAc 

a I ’ 
(146) 

and since I = ar2 where r is the radius of gyration, the above equa¬ 

tion may be written 

s (147) 

Now A is eliminated from eq. (147) by assuming that it bears 

the same relation to the stress in the column as exists between 

the deflection and stress in beams.7 This relation for beams is 

si2 ... 
A = k— in which k is a constant depending on the kind of material 

7 This assumption does much to destroy the rational basis of the formula 

since in a beam the stress is due to bending alone, and hence even if the column 

were an ideal one. only that part of the stress which is due to the - 

bending moment PA should be considered to be proportional to — instead of 
c 

the total unit-stress s. Further, in order to include the effects of deviations 

from ideal conditions part of the value of A should be considered to be due to 

initial crookedness. 
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of which the beams are made, the type of loading, and the end- 
l2 

conditions. And this may be written A = </>— where <f> is a con¬ 

stant similar to k, provided that the beams are subjected to the 

same maximum unit-stress and that this stress does not exceed 

the proportional limit of the material. Therefore A in eq. (147) is 

l2 . . . 
replaced by <£—; the resulting equation is 

(148) 

This equation is called the Gordon-Rankine column formula; 

Gordon used the least lateral dimension of the cross-section and 

Rankine introduced the radius of gyration. 

A value of <£ for columns of a given material and type of end 

connection is found from results of tests 8 of such columns, the 

value of 4> being selected so that the value of P in the equation 

agrees as well as may be with the average of the experimental 

values of the loads that caused the columns to fail. 

Values of </> thus found from experimental data vary widely; 

the values given in Table 3 are average values that have been 

used in engineering practice. The value for 4> recommended by 

Rankine for wrought-iron pin-ended columns (structural steel was 

not then manufactured) wTas -jewo and this value is still frequently 

used in specifications for structural steel columns, as for example, 

in the Building Ordnances of many cities. The straight-line 

formula (Art. 99), however, is now used extensively in the design 

of structures and also, but to a less extent, in the design of machines. 

To determine the maximum load P that a column can resist, 

the value of s in equation (148) is made equal to the ultimate com¬ 

pressive strength of the material (for ductile material the yield- 

point should be regarded as the ultimate compressive strength), 

8 In such tests the columns are subjected to approximately the same max¬ 

imum unit-stress at failure but the value of this stress is greater than the pro¬ 

portional limit of the material, although for ductile material, such as structural 

steel, the stress in the material when the column fails probably does not exceed 

the yield-point and hence is not much greater than the proportional limit. 

However, the method of obtaining <j>} and the assumption discussed in foot¬ 

note 7 render the formula empirical rather than rational. 
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TABLE 3 

Values * of <f> in Rankine’s Formula 

(The values given for “ Both Ends pivoted ” should be used for all three 

types of end condi cions except for columns that approach closely to an ideal 

column (as may be the case with columns having solid symmetrical sections) 

and for slender columns; see note below.) 

Material 
Both Ends 

Pivoted 

One End 

Fixed Other 

End Pivoted 

Both ends 

Fixed 

Timber. 4 2 i 
3 0 0 0 3000 3 0 0 0 

Cast Iron. 4 
5000 

2 
5000 

1 
5 0 0 0 

Wrought Iron. 4 2 1 
3 6 0 0 0 36000 3 6 0 0 0 

Structural Steel.. 4 2 1 
2 5 0 0 0 2 5 0 0 0 2 5 0 0 0 

* It will be noted that the values of <t> in this table are in the ratios of 4 : 2 : 1. These 

ratios were originally selected so as to make them agree with the effect of end conditions 

in very slender columns as found from Euler’s formula (see Art. 100). The columns used in 

most structures and machines, however, are not slender and in such columns experiments 

and experience have shown that deviations from ideal conditions such as crookedness in 

the column as a whole, local kinks, initial stresses, variation in the properties of the material, 

etc., are the factors that usually control the strength of the column; and that the end-con¬ 

ditions frequently have little effect, .'except in the case of slender columns and, possibly, 

columns having solid symmetrical sections. The value of <£ for columns with intermediate 

values of l/r as used in most structures and machines, should, therefore, be approximately 

the same for all three conditions of ends (see also Art. 101), and equal to, or slightly less 

than, that given for “ both ends pivoted.” 

and to determine a working load the value of s is a working com¬ 

pressive unit-stress for the material. A working value for s 

ranging from 12,500 to 16,250 lb. per sq. in. is frequently specified 

for structural steel columns (see footnote 17 and Art. 139) depend¬ 

ing somewhat on the value used for 0. For example, the Cambria 

Steel Handbook uses the formula 

P 
a 

12,500 

1 (l-Y 
36,000 VC 

and the Philadelphia Building Laws specify 

P 
a 

H 

16,250 

1 / A2* 

(148a) 

(1485) 
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Ritter’s Rational Constant.—Ritter proposed that a value of <f> 

be derived from the constants of the material instead of from test 
p 

data. Thus, since the value of — from Euler’s equation should 
a 

be equal, when ^ is large, to that from Rankine’s equation, we have, 

P 7r2E Q 

(149) 

the value of se being the proportional limit of the material since a 

slender column, due to the large deflection, is on the point of fail¬ 

ing when, or even before, the proportional limit is reached (see 

Fig. 182). Now since unity is small compared with ^ may 

be neglected and hence 

4> = 
7r2E’ 

(150) 

which is Ritter’s rational constant for use in Rankine’s formula for 

pivot-ended columns. This value of </> has been used to some 

extent in machine design. 

ILLUSTRATIVE PROBLEM 

Problem 178. The steel parallel rod AB (Fig. 186) of a locomotive has a 
rectangular cross-section 1 in. by 3 in. and is 6 ft. long. When the locomotive 

is starting the rod acts mainly as an axially loaded column the cross-bending 

due to the weight and to the centrifugal forces being negligible. The rod may 

be considered to be a pin-ended column as regards bending in the vertical plane 

and a fixed-ended column as regards bending in a horizontal plane; due to the 

shape of cross-section, the bar tends to bend in the horizontal plane, but the 

restraint of the pins tends to cause it to bend in a vertical plane as a pin-ended 

column. Find the working load to which the rod should be subjected, using 

a working stress equal to one-fourth of the yield-point. 

Solution.—The yield-point will be assumed to be 40,000 lb. per sq. in. and 

hence the working value of s is 10,000 lb. per sq. in. 

(a) Treating the rod as a pin-ended column: 

r2 = “=TT7^=Tjrf2=A(3)2 = °-75 in-2, a Oct 
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whence, 

2_(72)2 

~~ 0.75 
= 6910 and 

l 
- = 83.2, 
r 

3X10,000 

1 + 
25,000 

(83.2) 

30,000 

1+1.106 

= 14,250 lb., working load. 

Fig. 186.—Parallel-rod in compression. 

(6) Treating the rod as a fixed-ended column: 

whence, 

r db3 

db T2 b3 = T^in.2, 

(72)2 
iq 

1 2 

= 62,300 and 
l 
-=249, 
r 

P=- 
30,000 

1+. 
1 

25,000 
(249) 

30,000 

1+2.48 

= 8630 lb. working load, 

and hence the maximum working load the column should resist is 8630 lb. 

PROBLEMS 

179. A low-carbon steel bar 8 ft. long and 2.4 in. in diameter is to be tested 

as a pivot-ended column, the load being applied axially. The yield-point of 

the material is found to be 36,000 lb. per sq. in. Calculate the slenderness 

ratio and the maximum load the column would be expected to resist. 

I 
Ans. - = 160, P = 32,000 lb. 

r 

180. Two 8-in. 25.5-lb. steel I-beams are latticed together, the distance 

between them being such that the moments of inertia of the cross-section 

about the two axes of symmetry are equal. The column is pin-ended and is 
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20 ft. long. Calculate the value of-and the maximum unit-stress developed 
r 

by an axial load of 40 tons. 

Ans. - = 79.5; s = 10,700 lb. per sq. in. 
r 

181. What should be the spacing of 4X4 in. timber posts 6 ft. long, that 

support a horizontal platform which is loaded with a uniform load of 200 lb. 

per sq. ft.? Assume the platform to have no lateral support and hence assume 

the columns to be fixed at the lower end and free at the upper end; the value 

of <f> for such a column will be assumed to be four times that for a pivot-ended 

column (see Art. 100). Assume a working stress of 1000 lb. per sq. in. 

182. The steel connecting-rod on a certain engine is 3 in. by lj in. in 

cross-section and 2 ft. long. It may be assumed to be a pin-ended column 

for bending about an axis perpendicular to the 3 in. side and a fixed-ended 

column for bending about an axis parallel to the 3-in. side. What is the 

greatest pressure that may be applied on the 20-in. piston without exceeding a 

unit-stress in the rod of 16,000 lb. per sq. in.? Assume the connecting rod 

to be in its horizontal position. Ans. 170 lb. per sq. in. 

183. The member BC of the pin-con¬ 

nected truss shown in Fig. 187 is made of 

two 6-in. 15.5-lb. channels latticed to¬ 

gether; the moments of inertia about the 

two principal axes are equal. Calculate 

the maximum unit-stress in the member. 

Ans. s = 7470 lb. per sq. in. 

Fig. 187.—Truss containing 
compression members. 184‘ Flnd the maximum unit-stress in 

member AC of Fig. 187, assuming it to 

have the same cross-section as that of member BC described in the pre¬ 

ceding problem. 

185. A round timber column is 12 in. in diameter and 20 ft. long. If the 

column has fixed ends, what working axial load may be applied to the column 

assuming a working stress of 800 lb. per sq. in. 

186. A hollow cast-iron column has an outside diameter of 8 in., and inside 

diameter of 6 in. and a length of 15 ft. If the ends are fixed what is the max¬ 

imum unit-stress in the column when it carries an axial load of 80,000 lb.? 

Note.—The problems after Art. 99 may be solved by Rankine’s formula 

if additional problems are desired. 

99. Straight-line Formula—If a series of columns, all made of 

the same material, with the same general shape of cross-section 
and the same conditions of ends but with different slenderness 

ratios, are tested to failure by subjecting them to the same type of 
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loading, the test results will show that, for columns having inter¬ 

mediate slenderness ratios, the load per unit area (^j decreases 

approximately in the same proportion that the slenderness ratio 

P 
increases. In other words the relation between — causing failure 

and ^ is represented approximately by a straight line. 

Fig. 188.—Graphical representation of straight-line column formula. 

For example, Fig. 188 shows the experimental results obtained 

from tests9 of pin-ended axially-loaded structural-steel columns 

having H-sections. The ordinates represent loads causing failure 

divided by the cross-sectional area (^j and the abscissas repre¬ 

sent the slenderness ratios of the columns The variation 10 in 

the results for the three columns in each group indicates the 

effects of the factors (accidental eccentricities, initial crookedness, 

initial stresses, etc.) discussed in Art. 92. As shown in Fig. 188, 

for values of - between 50 and 150 approximately, a sloping 
r 

straight line fits the test results fairly well; for values of - less than 

9 Made at the Watertown Arsenal; see “ Tests of Metals,” 1909. 

10 The variations in some tests are much greater than those shown in Fig. 

188, particularly in test of large built-up sections. 
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about 50 the load per unit-area causing failure is considered to be 

constant and equal approximately to the yield-point of the mate¬ 

rial, even though laboratory tests of columns having solid section 

P 
sometimes show (as in Fig. 188) that the actual — causing failure 

is greater than the yield-point of the material; tests of built-up 
p 

columns, however, rarely give values of — greater than the yield- 

point. 
P P tr2E 

Further, the values of — found from Euler’s formula, — = 
’ a a /7N r 

for ideal pivot-ended column are less11 than the values of — found 
• a 

from tests, when ^ is relatively large (170 to 200). T. H. Johnson 12 

found from a careful study of the results of tests of slender columns 

that if 7r2 in Euler’s equation were replaced by 16 the resulting 

P 1QE 
equation, — = -77V2 ? would agree well with the test results, for pin- 

* © 
ended slender columns. The curve representing this equation is 

showm in Fig. 188. Thus, the straight line AB, in Fig. 188 repre¬ 

sents the test results only between certain limiting values of K 

Now the equation of a straight line (similar to AB, Fig. 188) is 

y = Cx+sy, 

in which C is the slope of the line, being negative in Fig. 188, and 

sy is the intercept on the 7/-axis. Therefore the equation of the 

line AB (Fig. 188) is 

- = Sy~C'.(151) 

11 This is probably due to the fact that a pin-ended column does not act 

as an ideal pivot-ended column; the friction of the pin exerts an end-moment 

which causes the column to act with an end restraint intermediate between a 

pivot-ended and a fixed-ended column; the influence of this end restraint 

being relatively large in the relatively slender columns. 

12 See Transactions of American Society of Civil Engineers, Vol. 15, 1886, 

p. 517. 
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which is called the straight-line column formula; it was first pro¬ 

posed by Mr. J. H. Johnson 13 in 1886. 
P 

But as already noted, this equation never reduces to — = sy since 

the value of ^ in the equation cannot be less than that correspond¬ 

ing to the point A (Fig. 188). 

The above equation for the straight line 14 shown in Fig. 188 is 

- = 37,500-125-,.(152) 
a r 

and this equation agrees reasonably well with most of the available 

test data 15 obtained from tests on structural-steel pin-ended, 

axially-loaded columns in which the full strengths of the col¬ 

umns were developed; that is, the columns did not fail due to 

local wrinkling or to weak end connections, etc. 

P 
Since the value of — given by equation (152) is the load per 

P 
unit-area that causes failure, a working value of — may be found 

by dividing the right-hand member of the equation by a factor 

(to make allowance for uncertainty of loads, etc., see Art. 7)— 

a so-called factor of safety. A value of 2.5 is recommended 16 for 

13 Transactions of American Society of Civil Engineers. Vol. 15, 1886, 

p. 517. 

14 Prof. J. B. Johnson found that a parabola fitted the tests results even 

better than a straight line, and the following equation of a parabola was found 

by the Column Committee of the A. R. E. A. to agree well with test results 

for structural-steel pin-ended columns 

P 5 l 
- = 32,500-- 
a 8\r 

By applying a reduction factor of 2.5 the working or design formula becomes 

P 1/A2 
- = 13,000-- - . 
a 4\r/ 

15 See Report of Sub-Committee on Iron and Steel Structures of the 

American Railway Engineering Association, Vol. 21, Jan., 1920. Appendix B. 

16 Since this value is based on the yield-point it is equivalent to a value 

of about 5 based on the ultimate strength; the value commonly used for 

tension members and beams is 2 based on the yield-point and hence about 4 

based on the ultimate strength. For a discussion of this matter see Art. 

139. 
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structural steel columns by a joint committee of the American 

Railway Engineering Association (A. R. E. A.) and the American 

Society of Civil Engineers (A. S. C. E.); the working load per unit- 

area then, is 

- = 15,000 - 50-, .(153) 
a r 

p 
with a specified maximum allowable value for -- of 12,500 lb. per 

sq. in. This equation is represented by the line MN in Fig. 188. 

Thus, the design formulas17 for structural-steel pin-ended18 

axially-loaded columns so designed that they do not fail due to 

local wrinkling or to weak end-connections are: 

P l 
— = 12,500, if - is not greater than 50, . . . (154) 

- = 15,000 — 50,- if - lies between 50 and 150 . (155) 
a r r 

P 16E l . . 
— =-2 n - is greater than 150. 

© 
(156) 

However, the values of — found from the last two of the above 
a 

equations differ but little for values of - between 150 and 210, as 

17 The following formulas were formerly given in the specifications of 

the A. R. E. A. and are still widely used for the design of columns in build¬ 

ings, etc. 

P l 
— = 14,000 if - is less than 50, 
a r 

P l l 
— = 16,000 — 70 - if - is between 50 and 120. 
a r r 

Thus the later specifications changes the former by reducing the maximum 

permissible unit-stress and by deducting less for the effect of length. It is 

important to note that the reduction in the permissible stress in columns has 

been accompanied by a tendency to increase the permissible stresses in beams 

and tension members, and this is consistent with the discussion in Arts. 91 

and 92. 

18 The effect of end conditions is discussed in Art. 100; but specifications 

usually make no allowance for the end restraint that occurs due to riveted 

end-connections as used in buildings, bridges, cranes, etc. 
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indicated in Fig. 188, and hence the second of the above equations 

may be considered fairly reliable for values of ^ between 50 and 210. 

In designing a column, by the straight-line formula, to resist 

a given load, the dimensions of the cross-section may easily be 

found directly from the formula, provided that the area is circular 

or square, but the dimensions of sections of columns made of 

rolled shapes it is convenient to use the method of trial and error, 

since the calculations involve quadratic equations. Steel com¬ 

panies’ hand books give safe loads on columns having various sec¬ 

tions as calculated by different formulas, and these values may be 

used to secure the first trial value of the section when employing 

a formula different from that used in the handbook. 

Timber and Cast-iron Columns.—The following straight-line for- 

P 
mulas giving working values of — are representative of those in 

common use. 
P l 
— = 1000—6-, for structural timber, . . . (157) 
a r 

- = 9000—40-, for cast iron.(158) 
a r’ 

ILLUSTRATIVE PROBLEM 

Problem 187. A latticed, pin-ended, steel column is made of two 10-in. 

15-lb. channels (Fig. 189). The distance, h, between 

backs is such that the moments of inertia about the 

x and y axes are equal. The column is 20 ft. long. 

Calculate the slenderness ratio and the working axial 

load for the column. 

Solution. The following values are found in a steel 

maker’s handbook: 

a = 2X4.46 = 8.92 sq. in., and r = 3.87 in. 

I 240 

r 3.87 
62.0, and hence equation 155 is applicable. 

P l 
- = 15,000-50- 
a r 

= (15,000—50X62) = 11,900 lb. per sq. in. 

P = 8.92X11,900 = 106,000 lb., working load. 

Fig. 189.—Lattiecd 

column. 
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PROBLEMS 

188. A standard 12-in., 40-lb. I-beam 8 ft. long is used as a column with 

riveted end-connections that are assumed to be equivalent to pin-ends. What 

working axial load should it carry? (From Cambria handbook; Ii = 245.9 in.4, 

U = 10.95 in.4, a = 11.76 in.2. Ans. 117,600 1b. 

189. A square timber column 16 ft. long resists a working axial load of 

120,000 lb. Find the dimensions of the cross-section. 
Ans. 13.1 in. square. 

190. A column in a certain power-house has an unsupported length of 

22 ft. and is made up of a 12 in. by \ in. plate, to which are riveted four 5 in. 

by 3^ in. by §-in. angles as shown in Fig. 190. Find the working axial load. 

191. What size of angle should be used for the member BC of the truss 

shown in Fig. 191 (see also Problem 31 and Fig. 33). 

IT 
Fig. 192. 

192. The upper chord member of a truss (similar to AB 

or BD in Fig. 191) consists of two angles, separated | in. 

by washers (Fig. 192). If the unsupported length of the 

chord is 5 ft. and the total compressive axial stress is 65,000 

lb. find the size of angles required. 

Ans. 5-in. by 3^-in. by j^-in. angles. 

Note: The problems after Art. 98 may be solved by the straight-line 

formula if additional problems are desired. 

100. Effect of End-conditions.—I. On Ideal Slender Col¬ 

umns.—The more important ideal • end-conditions that are 
approached more or less closely in the end-connections of struc¬ 
tural columns are illustrated in Fig. 193, and may be described 
as follows: 

(а) Both ends free to turn but not free to move laterally. 
Fig. 193(a); a column subjected to such end-conditions is usually 
called a pivot-, round-, or hinge-ended column. 

(б) Both ends fixed so that the tangents to the elastic curve at 
the ends are parallel to the original axis of the column, Fig. 193(6). 
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(c) One end fixed and one end free to turn but not free to move 

laterally, Fig. 193(c). 

(d) One end fixed and one end free from all restraint, Fig. 

193(d). 

The axial load P that will cause the column shown in Fig. 

193(a) to bend (considered to be the maximum load a slender col¬ 

umn can resist, see Art. 95) is P =- J^. 

Fig. 193.—Effect of end-conditions on ideal slender columns. 

In Fig. 193(5) the points of inflection, A and C, are at a dis¬ 

tance of from the ends, and hence the middle half, ABC, is a 

column of the same type as that in Fig. 193(a). Thus the max¬ 

imum load P for a fixed-ended slender column is 

P = 
ir2EI ±tt2EI 

© l2 
(159) 

Therefore, a fixed-ended slender column of length l will carry as 

great a load as a pivot-ended column of length that is, a fixed- 

ended slender column of a given length is four 19 times as strong 

as a pivot-ended column of the same length. 

19 See footnote 22. 
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In Fig. 193(c) the inflection point C is at a distance of approx¬ 
imately 0.71 from A, and the part of the column ABC is of the same 

type as that of Fig. 193(a). Hence, 

D 7r2EI 2tt2EI . , , 
P= (Q 7Q2= 12 - approximately. . . (lbO) 

Therefore a slender column with one end fixed and the other end 
pivoted is approximately twice as strong as a column of the same 
length having both ends pivoted. 

In Fig. 193(d) the curve AB assumed by the column corre¬ 
sponds to the portion AB of Fig. 193(a) and hence Euler’s equa¬ 
tion for the column in Fig. 193(c) is 

tt2EI = 1 TV2 El 
(21)2 4 l2 * 

(161) 

Therefore, a slender column fixed at one end and free or unre¬ 
strained at the other is only one-fourth as strong as a pivot-ended 
column of the same length. 

II. On Columns as Ltsed in Structures and Machines.— 

The end connections of columns used in structures and machines 
do not as a rule permit the ideal conditions discussed above to 
occur. The more common types of structural columns are: 

Pin-ended Columns.—A column in a pin-connected structure 
is usually assumed to approximate closely to a pivot-ended 
column as regards bending in a plane perpendicular to the axis of 
the pins, and to approximate more or less closely to a fixed-ended 
column as regards bending in a plane parallel to the axis of the 
pins (see discussion under fixed-ended columns below). Tests 20 
indicate that the friction of the pin, particularly when the pin is 
relatively large and the load relatively small, causes the column 
to act as a fixed-ended column but when subjected to larger loads 
it acts as a pivot-ended column, and hence in practically all cases 
the friction should be neglected. Pin-ended columns are commonly 
used for compression members in bridges, for connecting rods of 
engines, etc. 

Columns with Ends Partially Restrained.—Columns in buildings, 
bridges, cranes, etc., are frequently fastened to other members by 

20See tests made by James Christie, Trans. A. S. C. E., 1883, pages 85-122; 
also “ Tests of Large Bridge Columns ” by Griffith and Bragg, Technologic 
Paper No. 101, Bureau of Standards, 1918. 
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riveted connections but columns with these kinds of end connec¬ 

tions cannot have fixed ends since the connections and also the 

supports to which the column is attached are never rigid. The 

amount of restraint depends on the relative stiffness of the column 

end-connections and of the supports to which the column is 

attached, the stiffer the connections and supports the more the 

column is restrained at its ends. 

As a rule it is impossible to determine in any specific case to 

what extent the ends are restrained, and in engineering practice the 

assumption is frequently made that all columns have pivot-ends. 

However, if the column is known to be well restrained allowance 

may be made for the increase in strength as indicated in Table 3 

and in Art. 102. 

Flat-ended or Square-ended Columns.—This type of column 

bears against approximately plane surfaces of end supports or foot¬ 

ings. If the surfaces of the ends of the column and of the footings 

were true plane surfaces and made perfect contact over the whole 

end surface of the column, flat-ended columns would approach 

closely to fixed-ended columns provided that the end supports 

were relatively rigid. However, there is always much uncertainty 

as to the way the column bears against the end supports, 

the unevenness of bearing causing, at working loads, an eccen¬ 

tricity of loading, and hence a so-called flat-ended column is, as 

a rule, considered to be little if any stronger than a pivot-ended 

column of the same slenderness ratio. Timber columns are com¬ 

monly used with so-called flat ends. 

101. Rankine’s Formula for Columns with Restrained Ends.— 

In Rankine’s formula the effect of end-conditions is introduced in 

the value of 4> as indicated in Art. 98 and in Table 3. Now <£ 

entered the equation in the term that was assumed to measure the 

resistance to bending only; further, end restraints affect the 

resistance to bending mainly, therefore, it has usually been assumed 

that the values of <f> for the various types of end restraints (see 

Table 3) are proportional to the effect of the same end restraints 

on ideal slender columns as found under I of Art. 100 above, since 

in slender columns bending is the only action considered; thus, <£ 

for fixed ends has usually been assumed to be four times that for 

pivot-ends, etc., as is shown by the values in Table 3. 

But (as already stated after Table 3) the results of tests of col¬ 

umns having intermediate values of slenderness ratios indicate 
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that the type of end conditions may have a much less effect on the 

strength of the columns than does the deviations from the assumed 

ideal conditions (see Art. 92), such as crookedness in the column 

as a whole, local kinks, initial stresses, variations in the properties 

of the material, etc. For example, some tests of steel columns 

having slenderness ratios less than 100 show that the strengths 

of the columns may be influenced but little by any of the end 

conditions commonly used. 

Therefore, except for columns that are relatively slender and 

for columns that approach closely to ideal columns as may be the 

case for members with solid symmetrical sections, it is well to 

assume that the value of 4> is the same for the different conditions 

of ends and equal to, or slightly less than, that given for pivot- 

ended columns (see Table 3 and formulas (148a) and (1486). 

102. Straight-line Formulas for Fixed-ended Columns.—As 

noted in Art. 100 the strength of an axially loaded slender ideal 

column with fixed or flat ends is four times that of a similar column 

having pivot ends. The strength of an ideal column having a 

very small slenderness ratio, on the other hand, is approximately 

the same for fixed ends as for pivoted ends since the strength of the 

column depends only on the strength of the material. Further, 

since the fixing of the ends increases the resistance of the column to 

bending chiefly, the influences of fixed ends would be expected to 

increase with the increase of and test results 21 indicate that this 
r 

is true. 
P l 

If test results for — and - for fixed-ended structural-steel col- 
a r 

umns are plotted, in a way similar to that used in Fig. 188 for pin- 

ended columns, a straight line is found to fit approximately the 

average of the test results, the equation of the line being 

^ = 37,500 - 90^.(162) 

If a working factor of 2.5 is used, as was done with the equation 

for pin-ended columns, the resulting equation giving the working 

load for structural-steel fixed-ended columns is 

- = 15,000 — 40-, .(163) 
a r v ' 

21 See Bulletin American Railway Engr. Assoc., Vol. 21, Jan., 1920, Ap¬ 

pendix B. 
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in which -- must not exceed 12,500 lb. per sq. in.; thus for values of 

l P 
- less than 62.5 the equation is, — = 12,500 lb: per sq. in. The above 

equations are recommended by the American Railway Engineer¬ 

ing Association. The upper limit for ^ to be used in eq. (163) is 

about 200 and for larger values than 200 Euler’s equation22 is. 

applicable. 

Equation (163) should be used only in cases where the restraint 

of the end connections are comparable to that offered by the rela¬ 

tively rigid heads of a testing machine when making a good con¬ 

tact with the end surfaces of the column. 

Buckling of Flange of Beam.—The compression flange of an 

I-beam or built-up girder is similar to a column with ends par¬ 

tially restrained, and hence may fail by deflecting sidewise. It is 

customary, therefore, to restrict the maximum compressive unit- 

stress in the angles or angles and plates which compose the com¬ 

pression flange of a built-up girder; the maximum allowable 

unit-stress, is stated in the A. R. E. A. specifications to be equal 
p . 

to — in the formula 
a 

- = 14,000 - 200j,.(164) 
a b’ 

in which l is the distance between lateral supports and b is the 

width of the flange. This equation becomes 

-=14,000 - 58-,.(165) 
a ’ r’ 

if the flange be regarded as rectangular, since then b2=12r2 and 

6 = 3.46r. 

103. Straight-line Formula for High Carbon and Alloy Steel 

Columns.—Formulas 154, 155 and 163 apply to columns made of 

22 Mr. T. H. Johnson found from a careful study (Trans. Am. Soc. C. E.,. 

Vol. 15, 1886, p. 517) of test data for slender columns having flat ends that 

approached closely to fixed ends, that Euler’s equation was approximately 

P 

a 
2~~ instead of 

0 
4-7T 2E 

as found for ideal slender fixed-ended columns. 
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steel having an ultimate tensile strength of 55,000 to 65,000 lb. 

per sq. in. and a yield-point of at least one-half of the ultimate 

strength, since these are the values stated in the specifications of 

steel for most structural purposes. 

Now if steel having a higher strength than this is used, the 

strengths of columns having small values of ^ will be increased in 

about the same ratio as the yield-points (or proportional limits) 

are increased, whereas the strength of the very slender 

columns will be increased very little, if any, since the strength 

of such columns depends on the stiffness (modulus of elas¬ 

ticity) of the material (not the strength of the material) 

and the stiffness of all grades of steel is practically con¬ 

stant.23 

There are at present not sufficient test data from which to 

determine the constants in a straight-line formula for columns of 

but the few test results24 available indicate 

that high-strength steel is of little 

advantage for slender columns and 

that, in accordance with the above 

reasoning, the formula for struc¬ 

tural steel columns should be 

modified for use with high- 

strength steel by increasing the 

constant C more than the constant 

high-strength steel 

sy, otherwise the value of — will be 

Fig. 194. 
too high for the larger values of 

In other words, if the line AB (Fig. 194) represents the straight- 

line formula for ordinary structural steel the line CD would repre¬ 

sent the formula for high-strength steel. • 

For example the safe load for a column made of high-strength 

23 Tubular steel struts sometimes used on airplanes have large values of - 
r 

and hence the struts will be little if any stronger when made of special alloy 

heat-treated steel than if made of ordinary low-carbon steel, although most of 

the other steel members of the airplane will be much stronger if made of the 
high-strength steel. 

24 Bull. Am. Ry. Engr. Assoc., Vol. 21, Jan., 1920, App. B. 
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steel (having a proportional limit of about 60,000 lb. per sq. in.) 

as given by the following straight line equation 

= 22,500 90-, 
r 

(166) 

with a maximum value for — of 18,750 lb. per sq. in., is comparable 

with the value of P in the equation — 15,000 — 50 - (with a max¬ 

imum of 12,500 lb. per sq. in.) for a column made of structural 

steel, as given in Art. 99. 

104. Eccentrically Loaded Columns.—In the preceding articles 

the column was assumed to be axially loaded. Many columns, 

however, are subjected to eccentric loads, 

and the Rankine formula and the straight- 

line formula may be modified to take 

account, approximately, of the eccentric¬ 

ity of loading as follows (the modified 

Euler’s equation is discussed in Art. 105): 

Modified Rankings Formula.—In Fig. 

195(a) let the column be subjected to a 

load P having an eccentricity e. This 

load may be resolved into an axial load 

Pi (equal to P) and a couple Pe (Fig. 

195). Now the load Pi if acting alone 

would cause a unit-stress si on the con¬ 

cave side which, according to Rankine’s 

formula, is 
PL . .I2 

s i=—( 
a \ 

(a) 

Fig. 195.—Eccentric load 

on column. 

and the bending couple Pe if acting alone would cause, and be held 

in equilibrium by, a resisting moment Pe = see Fig. 

1955). The unit-stress, s, on the concave side, then, is 

S = Si + S2 

Pec 

P ec\ 

r2 r2/’ -(!+* (167) 
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in which r is the radius of gyration of the cross-section about the 

centroidal axis, and c is the distance from the centroidal axis to 

the fiber on which the unit-stress s occurs. 

Modified Straight-line Formula.—According to the straight- 

line formula for axial loads (Art. 99) the maximum average unit- 

stress ^0 to which the column may be subjected is 

P-=Sy--Cl-.(168) 
a y r 

That is, a column with a given ^ may be considered to be an 

axially loaded compression block in which the allowable unit- 

stress is (^Sy—C-^j, provided that the value of ^is between certain 

imiting values, as explained in Art. 99. 

Now if the load P is applied with an eccentricity e, as in Fig. 

195(a), the unit-stress due to the bending moment Pe would be 

Me Pec Pec 

S2~T I W2’ 

and the maximum unit-stress in the column would be increased by 

P 
this amount as indicated in Fig. 195(6), and hence the value of — 

must be reduced by the amount $2. 

Thus, 

-=U-c-)-~ 
a \ r] arz 

or .(169) 

That is, a column with a given - and subjected to a load P having 

an eccentricity e may be treated as an axially loaded short com¬ 

pression block for which the allowable unit-stress is 
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provided that the value of - is between certain limiting values as 

explained in Art. 99. 

PROBLEMS 

193. A timber column supports one end of a beam as indicated in Fig. 196. 

The column has a square cross-section 12 in. by 12 in. and is 12 ft. long, and is 

assumed to have ends equivalent to pin ends. If the load is assumed to act 

with an eccentricity of 4 in., what working load should the column support? 

Fig. 196.—Eccentric load on column. 

r 
1£-1 

u,,» 
4 

bz722 
.4* 

7223 

1 ~c s 3' ' i 3 

ps 

=a 

' 77?i J u r 

\'rrr\ 

12 r 1 Xl 1 4 

Fig. 197. 

Details of 
Channel 

Cl= 5 sq. in 
I3= 80 in.4 

I4= 3.0 in.4 

X = 0.6 in 

194. A pin-ended steel column having the cross-section shown in Fig. 197 

is subjected to a load of 40 tons having an eccentricity of 2 in.; the load acts at 

A, Fig. 197. Calculate the maximum unit-stress in the column. 

195. A column is built up of two 10-in., 15-lb. channels laced together 

(see Fig. 189) so that the distance between backs is 6.33 in. (the moments of 

inertia about the two principal axes are then equal). The column is 18 ft. 

long. Calculate the working load if the eccentricity is (a) 0 in., (6) 2 in., 

(c) 4 in. 

105. Equivalent Eccentricity. Secant Formula.—As stated in 

Art. 97, one method of taking account of the effect of crookedness, 

lack of homogeneity of material, initial stresses, unintentional or 

accidental eccentricity, etc., is to assume that these conditions 

are equivalent, in producing stress, to a positive eccentricity of 

loading on a straight column of homogeneous material free from 

initial stresses. Thus, if the eccentricity be denoted by e, the 

bending moment at any section of the column is P(e-\-y), as shown 

in Fig. 198(a), instead of Py as was the case in the derivation of 

Euler’s column formula for an axially-loaded column (Art. 95). 

Now, as shown below, this change in the expression for the bend¬ 

ing moment leads to a modification of Euler’s formula, called 

the secant formula, from which the maximum unit-stress (and also 

maximum deflection) caused by a given load and eccentricity can 
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be found; the stress and deflection do not occur in Euler’s equa¬ 

tion for an axially-loaded column. Further, the secant formula, 

can be used for eccentrically loaded columns also, since e then is 

the actual eccentricity plus the equivalent eccentricity. 

Secant Formula.—The secant formula may be derived as 

follows: Let Fig. 198(a) represent a column of length l subjected 

to a load P having an eccentricity e. 

Now the equation of the curve assumed 

by the column is the same as that of a 

round-ended column of length L (Fig. 

1986) subjected to an axial load P, the 

part MN of the column (Fig. 1986) 

being in the same state whether the 

load P is applied at A with eccentricity 

e or at C with no eccentricity. Now, as 

stated in Art. 95, when the load P is 

applied at C as an axial load on a pivot- 

ended column, the column deflects 

when the load reaches a value Pi (say) 

slightly greater than that of P given by 

■2EI 
(6) 

Equivalent 

the Euler formula P = 
l2 

Further, 

eccentricity it was stated in Art. 95 that although 

there is a definite deflection corre¬ 

sponding to each value of Pi, a very small increase in the load 

causes a very large increase in the deflection, and hence we may 

assume that when the column bends, its position may be that of 

any one of the several curves CD in Fig. 198(6). But, for any 

given eccentricity e and length l, as indicated in Fig. 198(6), there 

is only one curve that the column can assume, and the maximum 

deflection A and the maximum unit-stress due to the bending 

moment P(e-fA) do not disappear from the elastic curve equation 

as was the case in the treatment of the axially-loaded slender 

column in Art. 95. 

Now, from Art. 95, the equation of any one of the curves CD 

(Fig. 1986) is 

T 
pA sm 4k (170) 

if the axes are chosen with the origin at C; but if the axes are 
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chosen with the origin at the center of the column length (at O', 

Fig. 198), the equation is (see footnote for Art. 95). 

y = A cos (171) 

But y in this equation is the deflection of the pivot-ended column 

of length L (Fig. 1986) and hence if y is made to represent the 

deflection of the eccentrically-loaded column as shown, Fig. 198(a), 

the equation of the elastic curve assumed by the column is 

y+e= (A+e) cos .(172) 

Now y = 0 when x = ^. Therefore, 

e = (A+e) cos • • • • (173) 

and hence the maximum deflection of the eccentrically-loaded 

column is 

A=e(secWS-1)’ 
A=e(sec^\S_1)- 

or 

The maximum bending moment is 

M = P( A+e) 

= p|^sec 
2 r\aE 

-1+6 

p 1 i- = Pe sec tta “U* 
2 rxaE 

The maximum fiber unit-stress s is 

P , Me 
S =-b-y- 

a 1 

(174) 

(175) 

Pec sec pr- 
2 r 

ar2 

i+se4 (176) 
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I P 
The expression — is an angle expressed in radians and is 

called the Eulerian angle. The above equation may also be 

written in the form 

,ec l IP' 

1+r2 S6° 2r\aE 

(177) 

The above equations are valid only for values of s within the 

proportional limit of the material since the elastic curve equation 

and the flexure formula are used in their derivations. But within 

the proportional limit they are valid provided that the column 

acts as a unit and hence does not fail due to local wrinkling or 

weak end connections. And when these conditions are satisfied 

the equivalent eccentricity e may be selected so that the calcu- 
p 

lated values of -- for axially loaded columns are made to agree as 

well as may be with experimental results. The secant formula 

has been presented from time to time in technical literature as 

being as satisfactory a solution of column action as is likely to be 

obtained, but due largely to its relative y complicated form and to 

insufficient experimental data for determining reliable values of 

the equivalent eccentricity it is not in general use. 

When the dimensions (a, c, r, and l) of the column are given 

and a value of e is known or assumed, the load P required to cause 

a specified unit-stress, s, may be found from equation (176). And 

likewise the area a needed to keep the unit-stress from exceeding 

the prescribed value, s, when the column is subjected to a given 

load, P, may be found if values of c, r and s are known. But in 

equation (176) since the quantities P and a are not expressed 

explicitly in terms of the other quantities, the solution of the equa¬ 

tion is most conveniently made by trial and error. To aid in the 

solution of equation (176) values of ' IZ 
\al<] 

/—7=» for various values of 

— and - are given in Table 4 for use in the investigation of steel 

columns (E = 30,000,000 lb. per sq. in. for steel). 

Values of e and of —The value of the equivalent eccentricity 

e to be used in equation (176) for axially loaded columns must be 
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assumed, the value depending on the judgment of the engineer. 

Moncrief ,25 from the analysis of the results of many tests of columns 

6C 
found the value of to range from 0.15 to 0.6, and he recommended 

the larger value to be on the safe side. He found that this value 

applies alike to cast iron, wrought iron, mild steel, high carbon 

steel and several kinds of timber. 

TABLE 4 

Values of sec L IZ 
2r\ aE 

in Secant Formula 

Values of 
r 

50 60 70 80 90 100 110 120 130 140 

5,000 1 .05 1 .08 1.11 1.15 1.20 1.25 1 .32 1.40 1.50 1.62 

8,000 1 .09 1 .14 1.19 1.26 1.35 1.46 1 .60 1.79 2.05 2.41 

10,000 1 .12 1 .17 1.25 1.34 1.47 1.63 1 .86 2.18 2.65 3.46 

14,000 1 .17 1 .25 1.37 1.54 1.77 2.12 2 .68 3.69 6.02 16.4 

18,000 1 .22 1 .35 1.53 1.79 2.21 2.95 4 .51 9.86 

20,000 1 .25 1 .40 1.62 1.95 2.51 3.62 6 .65 47.40 

22,000 1 .28 1 .45 1.71 2.13 2.90 4.65 12. 3 

a, j e 25,000 1 .33 1 .54 1.88 2.47 3.73 7.87 
«+-( 
0 28,000 1 .38 1 .64 2.08 2.93 5.15 22.90 

30,000 1 .42 1 .72 2.23 3.32 6.79 

cj 32,000 1 .46 1 .79 2.41 3.83 9.86 Values of 

> 35,000 1 .52 1 .92 2.73 4.93 28.70 l i P 

38,000 1 .59 2 07 3.13 6.80 sec —\ — 
2r\ aE 

40,000 1 .63 2. 18 3.46 9.07 

42,000 1. .68 2. 31 3.87 13.30 

45,000 1. 76 2. 51 4.68 43.00 

48,000 1. 85 2. 76 5.88 

50,000 1. 91 2. 95 7.06 

For a circular cross-section, if -3 = 0.6, e = 0.3r and hence 

for a column having a circular section 10 in. in diameter, e would 

equal f in. 

25 Trans. Am. Soc. Civ. Engrs., Vol. 45, 1901, p. 334. 
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Prichard 26 proposes the following: 

ec _ J__1 l_ 
~~^2 T7T i 

(178) 
r* 10 700 r 

And when this is applied to ordinary structural-steel pin-ended 

c 
columns in which the value of - is usually about -J, 

e = 0.07r+0.001-.(179) 
r 

Thus a column having the relatively large ^ of 100 (r = 5 and l = 500) 

the value of e is 0.85 in. 

Basquin 27 proposes the following: 

^ = 0.01+0.001- (180) 

In Fig. 199 are shown the curves representing the secant formula 

40 80 120 100 200 240 280 

Values of -~ 

Fig. 199.—Effect of values of — on secant column formula. 
7*2 

cc 
for steel columns, with different values of the eccentric ratio -5: 

r2 
the yield-point of the steel is assumed to be 40,000 lb. per sq. in. 

26 Trans. Am. Soc. Civ. Engrs., Vol. 61, p. 173. 

27 Journal Western Society Engrs., Vol. 18, 1913, p. 457. For a compila¬ 
tion of the recommendation of many authorities see Salmon’s “ Columns,” 

Oxford Technical Publications, p. 148. This book also gives an excellent 
discussion of the factors entering in the various column formulas. 
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PROBLEMS 

196. A column having the same cross-section as the column described 

in Prob. 172 (see Fig. 183) and a length of 25 ft. is subjected to an axial load 

of 120,000 lb. Find the maximum unit-stress, assuming that — = 0.5. 
r2 

Ans. s = 8530 lb. per sq. in. 

197. The column described in Prob. 183 is subjected to an axial load of 

73,000 lb. Find the maximum unit-stress in the column; use eq. (178) for 

finding a value of p. Ans. s = 9900 lb. per sq. in. 

198. Solve Prob. 180 by the secant formula using a value of 0.6 for —. 
r2 

199 Change the length of the column described in Prob. 192 to 6 ft. and 

solve by the secant formula using a value for — as given by eq. (180). 
r2 

106. Built-up Steel Columns.—In deriving the column for¬ 

mulas in the preceding articles it was assumed that bending or 

flexure existed in the column as a whole, the deflection of the axis 

of the column being the result of initial eccentricity of the load, 

lack of homogeneity in the material, a general bend or lack of 

straightness in the column as a whole, or a combination of two or 

more of these conditions. Now the resistance of the column to 

bending is increased by giving the cross-sectional area as large a 

radius of gyration as possible, thereby causing ^ to be small. This 

is accomplished in built-up columns by using thin component parts 

(plates, channels, angles, etc.), and placing the parts as far from 

the neutral axis as practicable, thereby tending to produce a 

flimsy column. To what extent the cross-section may thus be 

distended without causing the column to fail locally by wrinkling 

(secondary flexure) cannot be definitely known but it is probable 

that some of the disastrous failures of columns have been due to 

wrinkling 28 or to weak end connections. 

In order to help prevent local failure it is the practice in good 

design of built-up columns that the slenderness ratio of each 

28 For a column formula which takes account of the possible failure by 

wrinkling, see “ Strength of Columns ” by W. E. Lilly, Trans. Am. Soc. Civ. 

Engrs., 1913. 
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unsupported part of the built-up column shall not exceed the - of 

the whole column. For example, the ^ of the length, p, between 

lattice bar connections of each channel in Fig. 189 should not 

exceed the - of the whole column. However, this requirement is 
r 

hardly sufficient since at failure the column is so bent that the 

maximum fiber unit-stress due to combined compression and 

bending is equal to the yield-point of the steel, and hence the com¬ 

ponent part should be designed so that it will not fail below the 

yield-point, therefore the ^ of the component parts should be lim¬ 

ited to about 40, otherwise, if a component part located near the 

point of maximum bending (near the center) is a relatively slender 

column (even though it has the same ^ as the whole column) it 

would fail without developing the yield-point strength of the 

material. 

Further, test results 29 of built-up columns show that the effects 

of local kinks, initial stresses due to riveting, etc., local eccen¬ 

tricity of loading due to the method of tying the component parts 

together (interior eccentricity) and variation in strength of com¬ 

ponent parts may, and probably have, a more important effect in 

causing local flexure or wrinkling than has the ^ of the part in 

question. Again, even though these conditions do not cause the 

column to fail by local wrinkling they may be the cause of the 

initial bending which leads to the bending of the column as a 

whole. 

It must be remembered also that high localized stress in a 

column is more serious, in general, in its effect on the strength of 

a column that it is on the resistance of a tension or flexural member. 

For these reasons the working or allowable unit-stress for built- 

up structural steel columns is low compared with that for similar 

material when used in tension members and beams. For example, 

29 “An Investigation of Built-up Columns under Load,” Bulletin No. 44 

Engineering Experiment Station, University of Illinois; also, “ Tests of Large 

Bridge Columns ” by Griffith and Bragg, Technologic Paper No. 101, Bureau 

•of Standards. 
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a maximum allowable unit-stress of 12,500 lb. per sq. in. is spe¬ 

cified for structural steel columns whereas 16,000 to 18,000 lb. 

per sq. in. is allowed for tension and flexural members, and this 

maximum value of 12,500 is reduced as ^ increases according to 

the formulas of Art. 99, for, although factors other than ^ may 

have a controlling influence, as discussed above, there is no satis¬ 

factory way to measure their effect (unless it is the equivalent 

eccentricity discussed in Art. 105 which leads to a complicated 

formula), and a column formula that is made to agree with test 

results may be used with reasonable confidence even though it may 

not be rational, provided that the column is designed so that failure 

will not occur by wrinkling or due to weak end connections, and 

that the column is similar to those used in obtaining the test 

results. 

107. Columns Subjected to Cross-Bending.—A compression 

member that is subjected to cross-bending loads may be considered 

to be (1) a beam subjected to end 

thrust as discussed in Art. 86, or 

(2) a column subjected to cross¬ 

bending loads; depending on the 

relative magnitudes of the end 

thrust and cross-bending loads, and 

on the dimensions of the member. 

In some cases both methods should 

be used in designing or investigating 

the member. 

Let Fig. 200 represent a pin- 

ended column subjected to an axial 

end load P and a cross-bending load 

Q. An approximate value of the 

unit-stress developed may be found 

as follows: 

Modified Rankings Formula.— 

According to Rankine’s formula the 

load P if acting alone wou d produce a maximum unit-stress si 

on the concave side (Fig. 2006) such that 

Fig. 200.—Column subjected to 

transverse loads. 

Si 



248 COMPRESSION MEMBERS, COLUMNS 

Now if the deflection of the member as a beam, due to Q alone, be 

1 OP 
denoted by A (A in this case equals Art. 47) then the addi¬ 

tional stress caused by P due to the moment PA is 

PAc PAc 
S2 = - j - —-o * 

I ar2 

This is equivalent to assuming that the column is straight and that 

the load is applied with an eccentricity of A. Further, if the 

moment due to the cross-bending load alone be denoted by M 

(in this case M = \Ql, Prob. 87) the unit-stress S3 caused by this 

moment is 
Me Me 

S3 T o* 
I ar2 

And if the proportional limit is not exceeded, the unit stress, s, on 

the concave side is 
S = Si + S2 + S3 

PAc Me 

ar2 ar2- 
(181) 

Modified Straight-line Formula.—By use of the straight-line 

formula A may be considered an eccentricity, and equation (169) 

of Art. 104 may be used, from which the unit-stress due to the 

cross-bending must be subtracted. Hence 

P—l _M\_PAc_Mc 

a \ v r) ar2 ar2’ 
(182) 

Modified Secant Formula.—Similarly the secant formula 

(equation (169) of Art. 105) may be used, the value of e being 

made equal to A plus the assumed equivalent eccentricity e\, and 

the unit-stress due to the cross-bending load being added to the 

unit-stress due to the end load. Thus, 

(183) 

The values given by these equations err on the side of danger 

since the deflection of the column is greater than that assumed, 

but a more refined analysis, as a rule, is not practicable. 

PROBLEM 

200. Consider the member BC in Fig. 161 to be a pin-ended column sub¬ 

jected to cross-bending and calculate the maximum unit-stress in the member. 



CHAPTER XII 

COMBINED NORMAL AND SHEARING STRESSES 

(Chapter III should be reviewed before this chapter is studied. 

108. Introduction.—The problem discussed in this chapter 

may be stated as follows: Given, at a point in a body, a shearing 

unit-stress on each of two planes at right angles to each other, and 

a normal unit-stress on one of the two planes; find the values of 

the resulting maximum normal and shearing unit-stresses at the 

same point, in terms of the given stresses, and the directions of the 

planes on which these maximum stresses occur. 

Many structural and machine members are subjected to loads 

that cause the “ given ” stresses stated above, and these stresses 

may be found from the loads, by use of the equations developed 

in the preceding chapters. The given stresses may arise in the 

following ways: 

(a) The shearing unit-stress, ss, and the normal unit-stress, s, 

may be due to central loads (Art. 3), as in a bolt loaded as shown 

in Fig. 201, in which case and s are found from the loads as 

follows: 

(184) and s=—. 
a 

(ib) ss may be due to torsional loads and s to an axial load 

(Fig. 202), in which case (see Art. 26). 

Tc 
(185) and s=—. 

a 

(c) sa may be due to torsional loads and s to bending loads, as 

in an engine crank shaft, etc., in which case (see Art. 26 and 34) 

Tc 1 Me 
(186) 

249 
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(id) Both ss and s may occur in a beam in which case (see Art. 

40) 

sa=Yt^y^a anc* • • • (187) 

Further, as shown in Art. 17, if a shearing unit-stress of intensity 

s3 occurs in one plane a shearing unit-stress equal to ss must 

occur on a plane at right angles to the first. 

109. Maximum Normal and Shearing Stresses.—Fig. 201 

shows a bolt loaded, as suggested under (a) above, so as to produce 

the combination of stresses under discussion, the stresses being 

Fig. 201.—Combined shearing 

tensile stresses. 

Fig. 202.—Combined shearing and 

and tensile stresses. 

shown on the elementary block in the bolt, and Fig. 202 shows a 

similar block subjected to the same combination of stresses by the 

method of loading suggested under (6) above. Fig. 203(a) shows 

one of these elementary blocks, enlarged, and also the forces that 

A Css 

X 

Fig. 203.—Combined shearing and tensile stresses. 

act on its four faces and that hold it in equilibrium; the dimen¬ 

sion perpendicular to the plane of the paper is assumed for con¬ 

venience to be unity. 

The problem is to find the value of the maximum normal and 

shearing unit-stresses resulting from this combination of stresses, 
i 7 
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and the directions of the planes on which these maximum unit- 

stresses occur. 

To Find the Maximum Normal Stress.—Let a plane be passed 

through the elementary block of Fig. 203(a) at an angle 0 with 

the plane on which the normal stress occurs. The normal and 

shearing unit-stresses on this inclined plane will be denoted by 

s'\ and s'8, respectively. The forces, then, that hold the block 

ABC in equilibrium are as indicated in Fig. 203(6). And since 

the sum of the components of the forces in the ^-direction and in 

.the ^/-direction must each be equal to zero, we may write, 

BCs't cos 6+BCs's sin 6—ABss—ACst = 0, . (188) 
and 

BCs't sin d—BCs's cos 6—ACss = 0. . . (189) 

By dividing each of these equations by BC and noting that 

AB . „ , AC 
~~FT7y = sm 0 and = cos 0 the resulting equations are: 
BC BC 

from (188), 

from (189) 
(s't St) cos 0-j-(s's—ss) sin 0 = 0, . . . (190) 

s't sin 0— (s3-j-s's) cos 0 = 0.(191) 

But, the normal unit-stress, s't, has its maximum or minimum 

value on the plane on which the shearing unit-stress, s’ s, is zero (see 

Art. 110 for proof).1 Therefore, if s's in the above equations is 

made equal to zero, and if 0' is used to denote the value of 0 when 

s' t is a maximum or minimum, the above equations become, 

(s't—st) cos 0' — ss sin 0' = O, .... (192) 

ss cos 0' — s\ sin 0' = 0.(193) 

By eliminating 0' from these two equations, the maximum and 

minimum values of s' t may be found in terms of st and ss which in 

turn may be found from the external loads by the methods already 

discussed. And by eliminating s't from the two equations the 

1 This theorem was involved in a restricted form in Art. 35 where it was 

proved that the maximum fiber (normal) stress occurs on the section for which 

the shear is zero. It is also illustrated in Art. 16 where sn is shown to be always 

less than s, the stress on the plane where there is zero shearing stress. 
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values of O' may be found which give the directions of the planes 
on which the maximum and minimum normal stresses occur. 

By dividing (192) by (193) the following equation is obtained: 

S t &t_s8 
Ss s't 

or 
s't2 — sts't—ss2 = 0. 

Therefore, 

s,, = |s,±AJ(|5) +s,2, . . . . . . (194) 

s'f=Js<±|V8l2H-4s,2. . . . . . . (195) 

Thus, there are two principal 2 unit-stresses, one being the 
maximum normal unit-stress (in this case a tensile stress) given by 
the expression 

max. s't = ist-\-%Vs*2+4ss2, .(196) 

and the other the minimum normal unit-stress given by the 
expression 

min. s't = ist—iVst+4s82.(197) 

But the last term of the right side of this equation is always 
greater than and hence s't is a negative tensile stress, that is, 
a compressive stress, and may be written 

— s't=s'c= — i$*+iv/$f2+4ss2. . . . (198) 

Further, the planes on which the maximum and minimum normal 
unit-stresses occur are at right angles to each other as is proved 
below. 

If now the normal stress st in Fig. 203(a) had been a com¬ 
pressive stress, sC} then the maximum normal stress would have 
been a compressive stress given by the equation 

max. s'c = Jsc+jVsc2+4ss2, .(199) 

and the minimum normal stress would have been a negative com¬ 
pressive stress, that is, a tensile stress; namely, 

— s'c — s't = — §sc+^Vsc2+4ss2. . . . (200) 

2 A principal stress (see Art. 19) is one that occurs on a plane on which no 

shearing stress exists, and is always the maximum or minimum normal stress 
at the point under consideration. 
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Direction of Planes on Which Principal Stresses Occur.—The 

value of O' in equations (192) and (193) may be found by elimi¬ 

nating s't from these equations: 

From 193, 

, cos 0' 

sin B 

Substituting this value of s't in (192) we have 

or, 

whence, 

Therefore, 

cos2 0 n, . 
ss ——-Tf— st cos 6 =ss sin 6 , 

sm 0 

ss (cos2 6—sin2 S) =st sin g' cos S', 

ss cos 2d' = \st sin 2O'. 

9 o 

tan 2d' =—.(201) 
st 

Now there are always two angles, between 0° and 360°, for which 

the tangents are equal, the two angles differing by 180°. Thus, 

there are two values of 26' that differ by 180°, and hence there 

are two values of O' that differ by 90°, as 

indicated in Fig. 204. Therefore, the prin¬ 

cipal stresses occur on planes that are perpen¬ 

dicular to each other, and the direction of the 

principal planes may be found by solving 

equation (201) for O', 0' being measured from 

the plane on which the normal stress, st, 

occurs. The position of an elementary 

block on which the principal stresses act, 

as they occur in the bolt of Fig. 201, is 

shown in Fig. 205(a). 

The Maximum Value of the Shearing Unit-stress s's.—As shown 

in Art. 20, the maximum shearing unit-stress resulting from two 

principal stresses is one-half the algebraic difference of the princi¬ 

pal stresses. Therefore, 

max. s's = i(max. s't—min. s't) = i(s't~hs'c) 

= i(ist+iVs,2+4s,2)+(-iSl+iVSl2+4s,2). 

Fig. 204.—Planes on 

which principal 

stresses act. 
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Hence, 

or 
max. s's = |Vs,2-f-4sa2, 

max. 

(202) 

And, as shown in Art. 20, this maximum shearing' unit-stress 

occurs on each of two planes that make angles of 45° with each of 

the planes on which the principal stresses occur. That is, the 

Fig. 205.—Principal stresses and maximum shearing stresses in bolt. 

planes of maximum shear bisect the angles between the planes on which 

the principal stresses occur. The planes on which the maximum 

shearing stresses occur are shown in Fig. 205(5) in which d's = 

6} -\-45°. There are normal stresses also on the planes on which 

the maximum shearing stresses occur but these are not shown in 

Fig. 205(5). 

Fig. 206.—Directions of principal planes shown by areas of rupture of brittle 

material. 

The student should draw diagrams similar to Fig. 205 in con¬ 

nection with a shaft when loaded as indicated in Fig. 202, and 

explain why the cast-iron specimens shown in Fig. 206 failed as 

indicated. (See also Fig. 45). Since cast iron is weak in tension 

the failure in each case is by tension. 
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ILLUSTRATIVE PROBLEM 

^ Problem 201. If in Fig. 207 the axial tensile load, P, is equal to 45,000 lb., 

the twisting moment, Qq, is equal to 30,000 lb .-in. and the diameter, d, is 

equal to 3 in., find the maximum normal and shearing unit-stresses and the 

directions^ the planes on which these stresses occur. 

Fig. 207.—Stresses in bar subjected to combined tensile and torsional loads. 

Solution.—The unit-stress, st, caused by the load P is 

P 45,000 

a ?r(3)2 

~4~ 

= 6360 lb. per sq. in. 

and the shearing unit-stress, ss, caused by the torsional moment T or Qq is 

Tc 

s‘=7 
30,000X1.5 

7t(3)4 

32 

= 5660 lb. per sq. in. 

The planes on which these stresses occur at an outer fiber of the shaft, are 

shown in Fig. 207(a). 

The principal stresses, s't and s'c, and the maximum shearing unit-stresses, 

5's, resulting from the above stresses are, 

max. s'*=+§2 +4s«2 = | * 6360+1(6360)2+4(5660)2 

= 3180+6480 = 9660 lb. per sq. in., tensile stress. 

min. s't = %st — \Vsp+4ss2 = —3300 lb. per sq. in., compressive stress, 

s'a = Vsf2+4ss2 = 6480 lb. per sq. in., 

and the planes on which the principal stresses occur make the angles 6' with 

the plane on which the stress st occurs, the values of 0' being found as follows: 

tan 
2X5660 

6360 
= 1.78. 
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Hence 

20' = 60° 40' or 240° 40' 

and 

0'= 30° 20' or 120° 20'. 

as indicated in Fig. 207(6). Further, the angles 0', that the planes of maxi- 

imum shear make with the plane on which st occurs are 

0's = 0'+45° 

= 75° 20' and 165° 20'. 

These planes are shown in Fig. 207(c). 

Problem 202. A pressure P of 10,000 lb. on the crank pin of the steel crank¬ 

shaft shown in Fig. 208(a) is required to turn the shaft at constant speed when 

the shaft is subjected to a constant resisting torque. If the diameter, d, of 

the shaft is 4 in., find the maximum combined normal and shearing unit- 

stresses at the section AB. Also find the ratios of the maximum normal and 

shearing stresses to the corresponding yield points of the material if the tensile 

yield point is 40,000 lb. per sq. in. P acts perpendicular to the pin and to 

the crank. 

Fig. 208.—Stresses in crankshaft. 

Solution.—By considering a free body diagram of the part of the shaft to 

the right of section AB, it is evident that the only external force acting on this 

part is P, and hence the stresses at section AB are caused by P and must be 

such as to hold P in equilibrium. Now by introducing two equal, opposite, 

and colinear forces P2 and P3 at H (Fig. 2086), P is resolved into a bending 

load P 3 and a torsional couple P, P 2; and these three forces cause the same 

stresses on the section AB as the original single force P. Thus the shaft to 

the right of the section AB is subjected to combined bending and torsional 
loads. 

The bending moment at section AB due to the load P3 is 8P, and is held 

si 
in equilibrium by the resisting moment — on the section AB as shown in Fig. 

c 
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208(6). 

C) is 
Thus the compressive unit-stress s at D (or the tensile unit-stress at 

Me 8X10,000 X2 
S=T = 7T (4)< 

64 

= 12,730 lb. per sq. in. 

The twisting moment due to the forces P and P2 is 6P and is held in 

ssJ 
equilibrium by the shearing resisting moment — on section AB as shown in 

c 

Fig. 208(6). Thus the shearing unit-stress ss at D (or at C) is 

Tc 

y 
6X10,000X2 

7t(4)4 

32 

= 4770 lb. per sq. in. 

The maximum combined normal unit-stress at C and at D, then, is 

V = hy s 2+4sa 2 = i X 12,730+| V (12,730)2+(4770)2 

= 6365+7935 = 14,300 lb. per sq. in. 

This is a compressive stress at D and a tensile stress at C. The maximum 

combined shearing unit-stress at C and at D is 

s'8 = ^V$2+4ss2 = 7935 lb. per sq. in. 

If the tensile yield-point of the steel is 40,000 lb. per sq. in. and the shearing 

yield-point is six-tenths of the tensile yield-point (as found from tests, see 

Art. 140), then the maximum tensile stress is approximately 0.36 of the ten¬ 

sile yield-point, and the maximum shearing stress is 0.33 of the shearing yield- 

point. 

PROBLEMS 

203. If the values of P and Q in Fig. 205 (a) are 8000 lb. and 6000 lb. 

respectively, and the diameter of the bolt is f in., what are the maximum normal 

(tensile) and shearing unit-stresses developed in the bolt? If the bolt is made 

of steel having a tensile yield-point of 45,000 lb. per sq. in. and a shearing yield- 

point equal to 0.6 of the tensile yield-point, what are the ratios of the maxi¬ 

mum tensile and shearing stresses to the corresponding yield-points. 

Ans. 0.56; 0.60. 

204. A steam turbine drives an electric generator as indicated in Fig. 209. 

The diameter, d, of the shaft is 6 in. The weight of the generator is 15 tons. 
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The steam turbine delivers 1200 horse-power to the shaft and rotates at 800 

r.p.m. Find the maximum normal and shearing unit-stresses developed in 

the shaft. 

205. Two pulleys, A and B, are mounted on a shaft as shown in Fig. 210 . 

The driving pulley, A, transmits 10 h.p. to the shaft and the driven pulley B. 
It turns the shaft at 100 r.p.m. The smaller belt tension, Th is 320 lb. and 

the diameter, d, of the shaft is 2 in. and the diameter of each pulley is 2 ft. 

Find the maximum normal and shearing unit-stresses in the shaft. 

Ans. s'* = 15,800 lb. per sq. in.; s's = 8400 lb. per sq. in. 

206. The crank-pin pressure, P (Fig. 2115), perpendicular to the crank is 

5000 lb. when the shaft is turning against a constant resisting moment Qq. 
The diameter of the shaft at A, B, and C, is 3 in. Find the reactions Ri and 

Rt of the bearings (which are assumed to be pivot bearings) and also the max¬ 

imum normal and shearing unit-stresses at A, B, and C. 

207. If a shaft is subjected to combined torsion and bending, and the 

shearing yield-point of the material is six-tenths of the tensile yield-point, 

prove that the ratio of the shearing unit-stress s'8 to the shearing yield-point 

will be equal to the ratio of the tensile unit-stress s' * to the tensile yield-point 

when the ratio of the twisting moment T to the bending moment M is equal 

approximately to 0.9. 

208. A shaft 4 in. in diameter is subjected to an axial end thrust of 12 tons, 
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and also a bending moment and a twisting moment, the twisting moment being 

equal to one-half the bending moment. The maximum normal unit-stress is 
10,000 lb. per sq. in. and the shaft rotates at 100 r.p.m. What horsepower 
does the shaft transmit? 

209. A shaft 5 in. in diameter resists a bending moment of 120 ton-in. 

and a twisting moment of 70 ton-in. Find the magnitude of the maximum 
normal and shearing unit-stresses. 

Ans. s't=s'c = 10.5 ton per sq. in.; s's = 5.66 ton per sq. in. 

210. In which of the two shafts described below is the greater normal 
unit-stress developed and in which is the greater shearing unit-8tress devel¬ 

oped? Calculate the maximum unit-stresses in each shaft. 

(1) A 4-in. shaft subjected to a twisting moment of 40 ton-in. and a 
bending moment of 32 ton-in. 

(2) A 2-in. shaft subjected to a twisting moment of 7.0 ton-in. and a 

bending moment of 20 ton-in. 

110. Maximum Normal Stress Occurs on Plane of Zero 

Shearing Stress. Ellipse of Stress.—In Art. 109 it was stated 

that the maximum and minimum normal stresses occur on planes 

on which the shearing stress is zero. This fact will here be proved. 

In Fig. 212 let ABC be an ele¬ 

mentary prism at a point in any 

body; that is, AB, AC, and BC, 
are three planes passing through 

a given point in the body. Let the 

dimension of the prism perpen¬ 

dicular to the paper be unity. 

Further, let the planes AB and AC 

c 4 
»2 

U V* 
IT c 

Y 

Fig. 212.—Ellipse of stress. 

be the planes on which normal stresses only occur; the unit-stresses 

on these planes are denoted by si and S2 respectively. On the 

plane BC there will occur both a shearing unit-stress and a normal 

unit-stress; let the resultant or actual unit-stress on the face BC 
be denoted by sr, and let the coordinates of the extremity of the 

vector sr be x and y. 
Now since the forces acting on the prism are in equilibrium, 

the sum of the ^-components and of ^/-components must equal 

zero. Hence, 

(BCsr) cos (f) = ACsi,.(203) 

and 

(.BCsr) sin (f> = ABs2,.(204) 
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but sr cos 4> = x, sr sin <f> ■■ 
AC 

y’ BC= C0S 

, AB . 
and = sm 

(203) and (204) may be written as follows: 

X 
x = s\ cos 9 or — = cos 9, 

s i 
and 

v 
y = S2 sm 9 or — = sm 9, 

S2 

from which the following equation is obtained, 

7*2 a y2 

—2+-^o = cos2 0+sin2 0 = 1. . . 
sl2 S22 

Hence 

(205) 

This is an equation of an ellipse having si and S2, the principal 

unit-stresses, as the semi-axes, and hence the locus of the extremity 

of the vector representing the unit-stress on the face BC as this 

face is assumed to turn through 360° is an ellipse. This ellipse 

is called the ellipse of stress. 

Now, as may be seen from inspection, the unit-stress sr has its 

maximum or minimum value when it is one of the semi-axes of the 

ellipse, that is, when it occurs on a plane on which there is no 

shearing stress. 

Planes of Maximum Shearing Stress.—In Art. 20 it was shown 

that the shearing unit-stress, s'8, on the oblique plane BC (Fig. 

212) is 

s/«“i(®i+«2) sin 20.(206) 

The graph of this equation is given in 

Fig. 213 in polar coordinates, s's being 

plotted as a radius vector and 9 as 

the angle. This graph shows that the 

shearing unit-stress is a maximum on 

planes making angles of 45° with the 

planes on which the principal stresses 

si and S2 occur and that the shearing 

unit-stress is zero on the principal 

planes. 

111. Diagonal Tensile Stress in a 

Beam.—The normal unit-stress on 

any right cross-section of a beam, 

Fig. 213.—Planes of maxi¬ 
mum shearing stress bisect 
angles between principal 
planes. 
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such as section A A, Fig. 214, is the greatest at the outermost 

fiber and is found from the flexure formula, 

Me 
S=T’ 

where c is the distance from the neutral axis to the most remote 

fiber and M is the bending moment at the section considered. 

And since the shearing stress at the outermost fiber is zero (Art. 

40), the stress s is the maximum normal stress at this point of the 

beam as is indicated at the outer fibers in section AA' of Fig. 214. 

At a point in the same section but nearer to the neutral axis, 

as at B, the normal stress on the vertical plane is also found from 

the same expression, in which c is the distance from the neutral 

axis to the point B, but this normal unit-stress is not the maximum 

normal unit-stress at this point since it is combined with shearing 

stresses on the vertical and horizontal planes, the values of which 

are 

(see Art. 40). 

Thus the resulting maximum normal unit-stress at B is 

s' = -|s+jVs2+4ss2 (see equation 202), 

in which s, and hence s', are tensile stresses at the point B. Further, 

the plane on which the stress s' occurs is inclined to the vertical 

cross-section on which s occurs as is indicated in Fig. 214, the 

stress s' is, therefore, frequently called the diagonal tensile unit- 

stress or briefly diagonal tension. 
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Now in most beams the diagonal tensile unit-stress at any 

point in a cross-section is less than the tensile stress at the outer¬ 

most fiber, and hence need not be found. In reinforced con¬ 

crete beams, however, the diagonal tensile stress is often of impor¬ 

tance since concrete is very weak in tension and, if the beam has 

only longitudinal reinforcing bars in the lower part of the beam, 

the diagonal tension may cause cracking of the beam in that por¬ 

tion of the beam where the shearing stresses are relatively large; 

the diagonal tension crack for the beam loaded as shown in Fig. 

214 would occur along a line similar to XY. 
The relative directions of the maximum normal stresses at 

various points along a section AA' are shown in Fig. 214, and the 

relation of these to the diagonal tension crack XY is also shown. 

In the central portion of the beam where no shear exists the 

cracks are approximately vertical as indicated in Fig. 214. 

Fig. 215.—Directions of resultant stresses in beam. 

\\w //// 

The manner in which the directions of the principal stresses 

vary in a simple beam are shown in Fig. 215; the full lines refer to 

tensile stresses and the dotted lines to compressive stresses. 

In order to prevent failure of concrete 

beams by diagonal tension, some of the 

longitudinal bars are usually bent up at 

the ends as indicated in Fig. 216 so that 

the bars have approximately the same 

direction as the diagonal tensile stresses. 

A diagonal tension failure is fre¬ 

quently called a shear failure and the 

diagonal reinforcing bars are frequently 

called shear bars but it should be kept clearly in mind that the 

failure is due to tensile stresses and the bars are stressed in 

tension. 

PROBLEMS 

Fig. 216.—Steel reinforc¬ 
ing bars for resisting 
diagonal tensile stresses. 

211. The load P acting on the short cantilever beam (Fig. 217) is 800 lb. 
(a) Find the unit-stress at point A normal to the vertical section. (6) Find 
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the horizontal and vertical shearing unit-stresses at A. (c) Find the principal 
unit-stresses at A. 

Fig. 217. Fig. 218. 

212. The loads P acting on the simple beam shown in Fig. 218 are each 

equal to 3800 lb. (a) Find the diagonal tensile unit-stress at the point A. 

112. Expression for Ee.—As stated in Art. 22, when principal 

unit-stresses si and S2 occur on two mutually perpendicular planes 

at a point in a body the maximum unit-deformation, e, at that 

point is in the direction of the larger unit-stress and is equal to 

e 
Si S2 

E mE’ 
(207) 

in which si is the larger stress and m is Poisson’s ratio (Art. 21). 

When si is a tensile stress e is a unit-elongation, and when si is a 

compressive stress e is a unit-shortening. Further, when S2 is 

opposite in sign to si it is regarded as negative. 

Now, as shown in Art. 109, when a body is subjected to loads 

that cause shearing stresses on two mutually perpendicular planes 

and a normal stress on one of the planes, there occur principal 

stresses on certain other planes. If, for- example, loads cause a 

tensile stress combined with shear as in the bolt of Fig. 219, the 

maximum unit-deformation is an elongation in the direction of the 

maximum principal stress s't and its value is 

e=i~mW’.(208) 
or 

E e = s' i+ms'c, 
since s'c is negative. 

By substituting in the above equations the values of s't and 

s'c found in Art. 109 the following equations are obtained: 

Ee = ist+W st2+4ss2+m(-|s<+iV s*2+4ss2) 

= |(1 -m)st+i(l+m)Vst2+4:Ss2. (209) 
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For steel the value of m found from experimental results (see 

Art. 21) is 0.25 to 0.30. Thus, for steel, the above equation 

becomes, _ 
Ee = %st+fVs2*+4s52, when m=0.25, . . . (210) 

and _ 
£e = 0.35s,+0.65vV+4ss2 when m = 0.30. . (211) 

Now Ee may be called the equivalent uni-directional unit-stress,3 

since, if e were caused by a load that developed a stress in one 

direction only (uni-directional stress), the value of Ee would 

then be numerically equal to the actual unit-stress; thus, when a 

bar is pulled by an axial load P in a testing machine, the value of 

the unit-stress, s, is fixed by the conditions of equilibrium and is 

P 
equal to —, but experiment shows that s is also numerically equal 

= E). Likewise, when two normal stresses at right angles to Ee (? 

Fig. 219.—Strain due to principal stresses. 

to each other are developed as in Fig. 219(6) and (c) each stress is 

fixed solely by the conditions of equilibrium but the value of Ee 

is not equal to either of the unit-stresses (see also Art. 22). The 

significance and use of the quantity Ee will be discussed in the 

following article. 

113. Theories of Failure of Elastic Action and Their Applica¬ 

tion.—If a bar is subjected to a gradually increasing axial tensile 

load in one direction only, the material, when the load reaches a 

certain value, will begin to acquire permanent deformation and 

3 Other names, such as simple equivalent stress, strain-stress, etc., have 

been used. However, it is important to note that Ee is hot a real unit-stress 

(force per unit area) in the material but merely a quantity expressed in the 

same units (lb. per sq. in) as a unit-stress. 
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hence to fail in elastic action, and the reason for the failure may 

be (1) because the normal (tensile) unit-stress — reaches 

the tensile elastic limit, se (or proportional limit, see Art. 137c), 

or (2) because the shearing unit-stress reaches the shearing elastic 

limit; this requires that the shearing elastic limit shall be equal to 

or less than one-half the tensile elastic limit since, as shown in 

Art. 16, the maximum shearing unit-stress, on a 45-degree oblique 

plane, is one-half the tensile unit-stress, or (3) because the unit- 

deformation reaches a value which cannot be exceeded without 

having part of the deformation plastic and hence permanent, or 

(4) because the energy absorbed by (or the work done on) the 

/I se2 1 s 2 \ 
material per unit volume reaches a value (^ “gr °r ^ -gr> see Art. 23 ) 

that can not be exceeded unless the material is given a plastic 

deformation. It is impossible to determine from a simple tension 

test, that is, from a test in which the stress is in one direction 

only, what is the real cause of the beginning of inelastic action in 

a material, because the above limiting values occur simultaneously. 

The four main theories suggested above may be stated briefly as 

follows: 

1. The maximum normal stress theory, often called Rankine’s 

theory, states that elastic action at any point in a material ceases, 

or inelastic action begins, only when the maximum normal (ten¬ 

sile) stress on a certain plane passing through 

the point reaches a value equal to the 

tensile elastic limit found in a simple tension 

test, regardless of the normal or shearing 

stresses that, occur on other planes through 

the point. Thus, if the block in Fig. 220(a) 

reaches its elastic limit when subjected to 

the stress si, the elastic limit will still be si 

even if the block is subjected to the stress S2 (Fig. 2205) in 

addition to si. 

2. The maximum strain theory, often called Saint Venant’s 

theory, states that inelastic action at any point in a body due to 

any combination of stresses at the point begins only when the 

maximum unit-elongation e at the point reaches a value equal to 

that which occurs when inelastic action begins in a bar subjected 

to an axial tension test; which is the value of e that occurs simul- 

(a) ib) 

Fig. 220. 
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taneously with the tensile elastic limit se of the material. Now 

since se = Ee when the stress is applied in one direction only, the 

maximum strain theory states that inelastic action begins at any 

point in a body when the value of Ee at that point reaches a value 

equal to the tensile elastic limit of the material. 

For example, according to this theory inelastic action in the 

block of Fig. 220(a) begins when si equals the elastic limit of the 

material, but inelastic action in the block of Fig. 220(6) does not be¬ 

gin until Ee in the direction of Si is equal to the elastic limit of the 

material, and this value of Ee will not occur until si in Fig. 220(6) 

is larger than si of Fig. 220(a). For, the unit-deformation in the 

direction si of the block in Fig. 220(a) is made less by the amount 

when the stress S2 is applied as in Fig. 220(6) (see Art. 22), and 

hence the stress si must be increased before the limiting unit- 

deformation is reached. 

3. The maximum shearing sir ess theory, sometimes called 

Guest’s theory, states that inelastic action at any point in a body 

begins only when the maximum shearing unit-stress on some plane 

through the point reaches a value equal to the shearing elastic 

limit found by testing the material in simple shear as in a torsion 

test (see Fig. 258 and Art. 140). And, as noted above, this theory 

when applied to a simple tension test of a bar requires that the 

shearing elastic limit shall be one-half the tensile elastic limit. 

4. The maximum energy or maximum resilience theory, pro¬ 

posed by Haigh, states that inelastic action at any point in a body 

due to any combination of stresses begins only when the energy 

per unit volume absorbed by the material at that point equals 

the energy per unit volume absorbed by a bar when stressed to 

the elastic limit in a simple tensile test. As shown in Art. 23, the 
| g 2 

value of this maximum energy per unit volume is - 
Z E 

Significance of the Theories.—It must be kept clearly in min 

that the actual unit-stresses at a point in a body are fixed solely 

by the external forces, the stresses being such as to hold the external 

forces in equilibrium, and it is assumed that the stresses are known 

or can be found. The only uncertainty which the theories attempt 

to explain is the state or condition developed in the material that 

causes inelastic action in the material to start. 

Several experimental investigations have been carried out on 
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ductile material, such as steel and brass, with combinations of 

stresses designed to make clear the cause of inelastic action, and 

although the results are not entirely concordant, the best conclu¬ 

sion appears to be that in ductile metals inelastic action begins 

when the shearing unit-stress reaches the shearing elastic limit of 

the material unless the limiting value of Ee is reached before the 

shearing elastic limit is reached, in which case inelastic action 

begins when the limiting value of Ee is developed. The tests 

indicate, however, that the shearing elastic limit is somewhat 

greater than one-half of the tensile elastic limit as demanded by 

the maximum shear theory, the value of the shearing elastic limit 

for steel being close to six-tenths of the tensile elastic limit. The 

maximum energy theory also agrees fairly well with tests results 

for the combinations of stress used in the tests. 

In many of the problems discussed in the preceding chapters 

all these theories lead to the same results. In other problems the 

difference in the results obtained by the four theories are not 

important, and in some problems the assumptions made as to the 

distribution of loads and stresses (see Appendix III) contain 

errors that would not justify strong reliance on the results from 

one theory in preference to those from another. Partly for these 

reasons and partly due to long usage and to the too-frequent 

practice of assuming that the low value of the working stress is 

sufficient to compensate for all uncertainties, the maximum stress 

theory has been most commonly used, although the maximum 

shear theory, for ductile material, has gained rather wide accept¬ 

ance in recent years. The maximum strain theory has been used 

extensively in the design of guns. 

The method of applying the theories to a problem involving 

combined bending and torsion is given below. 

Application of Theories of Failure of Elastic Action.—As stated 

in the preceding article, the dimensions that should be assigned 

to a member which is subjected to loads causing combined stresses 

depend on the theory held concerning the cause of the breakdown 

of elastic action. This fact will be illustrated in the solution of a 

problem of the design of a member subjected to loads that cause 

the combination of stresses discussed in Art. 109; namely, shearing 

stresses on two planes at right angles to each other and a normal 

stress on one of the planes. In the following problem this com¬ 

bination of stresses is caused by combined bending and torsion. 
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ILLUSTRATIVE PROBLEM 

Problem 213. The crank-shaft shown in Fig. 208 is made of steel having 

a tensile and compiessive proportional limit of 40,000 lb. per sq. in. Deter¬ 

mine, by each of the four theories of failure, the diameter, d, the shaft should 

have to resist the load P without developing more than one-half of the max¬ 

imum elastic strength of the material. Tests show that the shearing propor¬ 

tional limit of steel is approximately 0.6 of the tensile proportional limit. 

Solution.—As noted in Problem 202, the twisting moment T and the bend¬ 

ing moment M have the following values: 

T = 6P = 60,000 lb .-in. and M = 8P = 80,000 lb .-in.; 

and the shearing and normal unit-stresses due, respectively, to T and M are 

Tc 1677 , Me 32 M 

and S=T"• 

(а) Maximum Normal Stress Theory.—The maximum normal unit-stress 

resulting from the unit-stresses ss and s, as shown in Art. 109, is 

s' = is+|Vs2+4sa2, 

and according to the maximum stress theory inelastic action in the material 

begins when s' exceeds 40,000 lb. per sq. in Hence the working unit-stress 

is 20,000 lb per sq. in. Therefore, 

20,ooo J- m+iJirnTJ*™ry 
2 7rd3 2 \ \ ird3 / \ ird3 ) 

=^| (M+VlHT), 
-ird3 

whence 

=^oo(80,00°+V (80,000) ’+(60-000> 2>> 
and 

g _ 
d3=-(8 +V(8) 2+(6)2) =45.8 in.3, 

7r 

Therefore 

d = 3.57 in. 

(б) Maximum Strain Theory —According to the maximum strain theory, 

inelastic action in the material begins when the maximum value of Ee becomes 

40,000 lb. per sq. in. And, from Art. 112 the maximum value of Ee, assuming 

m equal to 0.30, is given by the equation 

Pe = 0.35s+0.65V/s2+4s82. 
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The working value of Ee is \ X40,000. Thus, 

Hence 

Therefore 

20,000 = —7- (0.35M+0.65Vilf2+T2). 
ird3 

d3 = —(0.35 X8+0.65X10) = 47.4 in.2 
TV 

d = 3.62 in. 

(c) Maximum Shearing Stress Theory.—According to this theory inelastic 

action in the shaft begins when the maximum shearing unit-stress s'Sf as given 

by the equation 

s's = |VS2+4sfi2, 

reaches the shearing proportional limit, that is, 0.6X40,000 or 24,000 lb. per 

sq. in. The working unit-stress then is 12,000 lb. per sq. in. Hence, 

12,000 = iVs2+4ss2 

Hence, 

Therefore, 

= -—Vm2+T2. 
ird3 

160 /- 1600 
d3 =—V82+62 =-; 

V2ir \2ir 
42.5 in.3 

d = 3.48 in. 

(d) Maximum Energy Theory.—As shown in Art. 23 the expression for the 

energy absorbed by the material per cubic inch when subjected to the stresses 

s and ss, as in the shaft here considered, is 

Is2 1 ss2 

2 E+ 2 ¥s’ 

But, for steel E8 = %E (Art. 5) and hence the above expression may be written 

1 sf H2 
2 E+4E' 

Now, according to the maximum energy theory the maximum value of the 

energy U that can be absorbed per unit volume without causing inelastic 

action in the material is 

2 E 

1 (40,000)2 

2 30,000,000 
= 26.6 in.-lb. per cu. in. 
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But since it is specified that the material shall be required to absorb \ X26.6 — 

13.3 in .-lb. per cu. in., when the shaft is subjected to the given load, we have, 

Is2 5 s,2 

13-3 = -2^+4lP 

4Xl3.3X£ = 2s2+5s*2 

/32M \ 2 , /16 T 

=2\~^) +5t< 
M3) 2 =11,100, 

d = 3.22 in. 

Thus, in this problem the maximum strain theory requires the largest shaft. 

PROBLEMS 

214. In the above problem change the length of the crank from 6 in. to 

12 in. and find, by each of the four theories, the diameter of the shaft required. 

215. Find, by all four theories of failure of elastic action, the area of 

cross-section that the steel bolt shown in Fig. 219(a) should have in order to 

resist a load P of 4000 lb. and a load Q of 3000 lb. without developing more 

than \ of the maximum elastic strength of the material. The bolt is made of 

steel having a tensile proportional limit of 30,000 lb. per sq. in. Use a value 

of 0.25 for Poisson’s ratio. 

216. Find, by all four theories of failure of elastic action, the diameter of 

the shaft shown in Fig. 202, if the load P is 8000 lb. and the torsional moment, 

Qq, is 16,000 lb.-in. Assume that the shaft, in resisting the loads, develops 

0.65 of the maximum elastic strength of the material. The shaft is made of 

steel having a tensile elastic limit of 60,000 lb. per sq. in. Use a value of 0.25 

for Poisson’s ratio. 

217. Prove that, when a cylindrical shaft is subjected to combined bending 

and torsion, the ratio of the maximum shearing stress s'a to the shearing 

yield point will be equal to the ratio of Ee to the tensile yield-point when 

the ratio of the twisting moment, T, to the bending moment, M, is 

approximately equal to 1.62, provided that the shearing elastic limit is 0.6 

of the tensile elastic limit. (See Problem 207 for the ratio of T to M accord¬ 

ing to the maximum stress theory.) 

218. A circular steel shaft having a tensile elastic limit of 36,000 lb. per 

sq. in. is subjected to a bending moment of 50 ton-in. and a twisting moment 
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of 50 ton-in. Assume that the shearing elastic limit is 0.6 of the tensile 

elastic limit, (a) Compute by each of the four theories of failure of elastic 

action the diameter the shaft must have if it develops § the maximum elastic 

strength of the material. (b) Change the bending moment to 5 ton-in. and 

repeat the problem, (c) Change the twisting moment to 5 ton-in. leaving the 

bending moment at 50 ton-in. and again repeat. 

Ans. (a) 4.68; 4.74; 4.65; 3.97. (b) 3.60; 3.84; 4.14; 3.39. (c) 4.40; 

4.40; 4.14; 3.67. 



CHAPTER XIII 

IMPACT AND ENERGY LOADS 

114. Introduction.—In the preceding chapters, the loads 

acting on the members were assumed to be gradually applied 

(static loads). To state the same idea in other words, the bodies 

that applied the loads were not in motion when they came in con¬ 

tact with the resisting member, and hence they delivered no 

kinetic energy to the resisting member. 

Members of engineering structures and machines, however, 

frequently must resist loads that are applied by moving bodies, 

and the kinetic energy of these moving bodies must be absorbed 

by the resisting member, thereby developing stresses and defor¬ 

mations in the member. 

Now there are two methods of determining the stresses and 

deformations developed in the resisting member: (1) To estimate 

the maximum pressure or force exerted by the moving body on 

the resisting member; this force is then considered to be a static 

load and is used in the equations developed in the preceding chap¬ 

ters. (2) To estimate the energy that is absorbed by the resisting 

member and from this value of the energy determine the stresses 

and deformations by use of the equations developed in this chapter. 

In the first method the load is a force and is, of course, expressed 

in pounds, tons, etc.; it is called an impact load and the method 

is frequently called the equivalent-static-load method. Whereas, 

in the second method the load is considered to be a quantity of 

energy and is therefore called an energy load; it is expressed in 

foot-pounds, inch-tons, etc. 

The determination of the stresses in structural and machine 

members that are subjected to impact or energy loads is less 

definite and satisfactory than in members subjected to static loads, 

for the reason, that, in general, the uncertainty as to the value of 

an impact load or of an energy load is greater than that of a static 

load. The design of members subjected to energy loads, there- 

272 
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fore, is based more directly on the study of existing machines and 

structures than is the design of members subjected to static loads. 

However, in this connection it is well to recognize, as stated in 

Art. 7, that the static loads to which members in structures and 

machines are assumed to be subjected frequently are only rough 

approximations of the actual loads that the members are required 

to resist. 

When the energy delivered to the resisting member is relatively 

small the equivalent-static-load method is the one more commonly 

used in determining the stresses in the member. Thus the load 

caused by a moving train on a bridge, by wind on a building, by a 

moving crowd of people on a stadium, etc., is assumed to be 

equivalent to a static load composed of the actual static or “ dead ” 

load plus a static load assumed to be equivalent (in producing 

stress) to the dynamic or impact effect of the load. This addi¬ 

tional (equivalent) static load is frequently called the “ live ” 

load. 

If, on the other hand, the energy delivered to the resisting 

member is relatively large the energy-load method may be the 

more useful one, for, it will be found that the dimensions of the 

resisting member and the properties of the material in the member 

that give it maximum resistance to an energy load are quite dif¬ 

ferent from those that give the member maximum resistance to a 

static load. 
115. Calculation of Energy Delivered to Resisting Member.— 

As a rule, only a part of the energy of the moving body that 

delivers the energy to the resisting member is absorbed or stored 

in the resisting member; some of the energy is spent in each of the 

following ways: 

(а) In causing stresses and deformations throughout the 

moving body itself. 

(б) In causing local stresses and deformation of both bodies 

at the surface of contact, especially if the velocity of the moving 

body is large when it comes in contact with the resisting body. 

(c) In overcoming the inertia resistance of the resisting mem¬ 

ber, and 

(id) In deforming and in moving the external supports to which 

the resisting member is attached. 

Thus, for example, an airplane when landing possesses kinetic 

energy which is delivered mainly to the wheels and axle on which 
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the wheels are mounted, and these parts are constructed so that 

they can absorb a large amount of the energy. But, a consider¬ 

able part of the energy of the airplane is absorbed as stated under 

(a) and (d) above, that is, in causing deformation of the frame of 

the airplane and in deforming the tires and spokes of the wheels 

and in causing depressions in the ground. 

Kinetic Energy of Bodies.—If the moving body that delivers 

the energy has a motion of translation or of rotation the kinetic 

energy of the body may be found from the expressions given below; 

from this kinetic energy must be subtracted the amount of energy 

assumed to be lost, in order to obtain the energy load absorbed 

by the resisting member. 

Translation.—The kinetic energy Ek, of a body having a motion 

of translation is 

Eh = -Mv2 = l^v2 .(212) 
2 2 g 

in which v is the velocity of the body and M is the number of units 

of mass in the body (found by dividing the weight, W, of the 

body by g, the acceleration which the weight causes when it is 

the only force acting on the body = —J. When W is expressed 

in pounds, g in feet per second per second, and v in feet per second, 

Ek will be expressed in foot-pounds. Further, if the body acquires 

the velocity v by falling freely from rest through a distance of h 

feet, then v2 is equal to 2gh and hence Ek=Wh. (The value of g 

is 32.2 ft. per sec.2, approximately). 

Rotating.—If the body that delivers the energy load has a 

motion of rotation about a fixed axis its kinetic energy Ek may be 

found from the expression 

Ek = il0u2,.(213) 

in which co is the angular velocity of the body and T0 is the moment 

of inertia of the body about the axis of rotation; I0 is expressed 

/W\ 
in terms of the mass of the body and the dimensions of the 

body. Thus, for a solid cylinder that rotates about its geometric 

1 W 
axis /o = o—r2, where r is the radius of the cylinder. If IF is 

^ 0 
expressed in pounds, g in feet per second per second, the dimen- 
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sions of the body in feet, and oo in radians per second, Ek will be 

expressed in foot-pounds. The values of Jo for bodies of other 

shapes may be found in books on analytical mechanics and in 

engineers’ handbooks. 

116. Stress in Bar Due to Axial Energy Load.—Let an energy 

load U be applied to a bar so that the bar is subjected to an axial 

tensile stress. Such a load occurs in machines of various types 

as will be discussed later; the method of estimating the value of U 

is given in the preceding article; namely, the value of U is the 

kinetic energy of the moving body less the part of this energy 

that is lost in ways stated in Art. 115. 

The problem is to find the maximum unit-stress in the bar 

caused by the energy load U. The assumption 1 is made that a 

material when resisting an energy load acts in the same way as 

when resisting a gradually applied (static) load; namely, unit- 

stress is proportional to unit-deformation until the proportional 

limit is reached. Hence, the energy U stored in the bar when the 

unit-stress in the bar is s (which is equal to the work, w, done on 

the bar in causing the stress s, provided that s is not greater than 

the proportional limit) may be expressed as follows: 

XJ=w = %Pe, 

in which P is the final value of the gradually applied load and e is 

the total elongation of the bar. But since s is within the propor¬ 

tional limit we have -=E. 
e 

Further, s = — where a is the cross¬ 
es 

sectional area of the bar. Hence, 

TT 1 S2 7 

U=2 Eal 

Now, since the energy stored in the bar is assumed to be inde¬ 

pendent of the way the energy is delivered to the bar, the rela¬ 

tion between any energy load U and the unit-stress s is 

TT 1 S2 7 

U = 2Eal 4 2 UE 

al ’ 
(214) 

1 This assumption probably is not true if the load is applied with extreme 

suddenness and acts on the body only a very short period of time, causing a 

“ momentary ” stress. But with energy loads as they usually occur in engi¬ 

neering practice the assumption is probably justified although experimental 

verification is difficult to obtain. 
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in which s must not exceed the proportional limit of the material. 

If U is expressed in inch-pounds, E in pounds per square inch, a in 

square inches, and l in inches, s will be expressed in pounds per 

square inch. Equation (214) shows that the energy absorbed 

per unit-volume of the material, when stressed to the proportional 

Is2 
limit, sey is •= this value is represented by the area OCD in Fig. 

z Jti 

221 and is called the modulus of resilience of the material (see 

Art. 23 and 146). 

The ideal material, then, for resisting energy loads in service 

in which the material must not incur permanent distortion, is one 

having a high modulus of resilience, that is, one having a high 

proportional limit and a low modulus of elasticity (see Art. 146 for 

further discussion). 

Ultimate Energy Resistance of a Material. Toughness.—The 

ultimate energy resistance of a material is the maximum amount 

of work that can be done on the material per unit of volume* 

without causing the material to rupture. It is represented by the 

total area under the stress-strain curve,1 area OCEF in Fig. 221. 

Most of this work is dissipated in heat and in causing permanent 

deformation of the material, and only a very small part is stored 

1 It is probable that the ultimate energy resistance is greater than that 

represented by the area under the static stress-strain curve, and hence the 

error introduced is on the side of safety. 
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in the material as stress-energy that can be recovered when the 

stress is released. The property of a body by virtue of which 

work can be done on the body when stressed beyond its elastic 

limit is called toughness. A tough material is needed, therefore, to 

resist energy loads when the material in service is likely to be 

stressed beyond its yield-point. 

For materials having a stress-strain diagram similar to that 

shown in Fig. 221 (that is, for ductile materials) the area under the 

curve is given approximately by the expression and hence 

the ultimate energy load U the bar can resist is, approximately, 

U 

Fig. 222.—Stress-strain diagram 

brittle material. 

*±VaJ,.(215)' 

in which sy and su are the yield- 

point and ultimate strength of 

the material, respectively, and eu 

is the ultimate unit-deforma¬ 

tion. And, for material having 

a parabolic stress-strain diagram 

(Fig. 222) such as cast iron and 

concrete, the area under the 

curve, is approximately fsueu, 

and hence the ultimate energy 

load a bar of such a material can 

resist is, approximately, 

U = isueu.(216) 

117. Comparison of Effects of Static and Energy Loads.— 

The resistance offered by a bar to a static axial load, P, depends 

only on the maximum unit-stress developed, which occurs on the 

smallest cross-section (P = as), whereas the resistance of the bar 

to an energy load, U, as indicated by equation (214), depends not 

only on the maximum unit-stress, s, but also (1) on the distribu¬ 

tion of the stress throughout the body, since the energy absorbed 

1 
by a given unit of volume is - and hence depends on the degree z hi 
to which that volume is stressed, and (2) on the number of units 

of volume (al) of material in the bar. The influence of these two 

factors may be shown as follows: 



278 IMPACT AND ENERGY LOADS 

(1) The static strengths of the two cylindrical bars shown in 

Fig. 223 when subjected to axial loads are equal, since the smallest 

cross-sections are equal, and hence the loads P required to pro¬ 

duce a given stress s in the bars are equal (P = as). The energy 

loads required to produce a given stress 

in the two bars, however, are very dif¬ 

ferent; the bar having the constant 

diameter, and hence a uniform distribu¬ 

tion of stress throughout the length of 

the bar, is able to absorb the greater 

amount of energy. For example, if 

the diameter of the upper hah of the 

bar shown in Fig. 223(6) is reduced 

from 2d to d the area a (and also 

volume al) will, thereby, be decreased 

to one-fourth of the original area (and 

volume), and hence the unit-stress will 

be increased to four times the original 

value. Therefore, the energy absorbed 

per unit volume (- (IS)by this upper 

half will be sixteen times as great as 

„ ™ ™ i , that absorbed per unit-volume when the 
Fig. 223.—The bars have • oj to. • 

equal resistance to static diameter is 2d. Thus, in the expres- 
1 s1 2 

sion - for the upper half of the 
2 hi 

loads, but not to energy 

loads. 

1 s2 
bar, the factor - -= has been increased more than the factor al 

2 h 

has been decreased; the total energy absorbed by the upper half 

of the bar being increased to four times its original value by 

reducing the diameter of the upper half from 2d to d. 

This method of increasing the energy load that can be applied 

to a bar was brought forcibly to the attention of engineers in the 

early development of the Straight Line engine by Professor John 

E. Sweet. The bolts in the connecting-rod head when made in 

the usual form with full-sized shanks and threaded ends as in 

Fig. 224(a) frequently broke 3 in service due to the energy load 

3 As will be shown in the next chapter, failure of material is frequently 

due to the repeated application of a stress if the stress is above a limiting 

minimum value, and this was probably the cause of the failure of the bolts 
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delivered by the reciprocating parts of the engine. By turning down 

the bolts so that the area of cross-section of the shank was equal to 

that at the roots of the threads, as shown in Fig. 224(6), the dif¬ 

ficulty was removed since most of the energy of the reciprocating 

parts was then absorbed in the shank of the bolt, and the amount 

(a) 

Fig. 224.—Energy resistance of bolt increased by decreasing diameter of 

shank. 

absorbed at the roots of the thread was thereby greatly reduced 

with a corresponding reduction in the stress developed at the roots 

of the threads. 

It will be seen, therefore, that uneven distribution of stress 

throughout a member may greatly reduce the energy load that 

can be applied to the body. 

2. If the stress in a bar is distributed uniformly throughout 

the bar, that is, if the area of cross-section is constant, the energy 

load that the bar will resist may be increased by increasing the 

length of the bar since this increases the volume, each unit of vol¬ 

ume absorbing the same amount of energy. 

This method of increasing the energy resistance of a member 

was clearly illustrated in the early development of rock drills.4 

The cylinder heads of the rock drills were attached to the cylinder 

as shown in Fig. 225(a) and since in the operation of the drill it is 

impossible to avoid occasional sharp blows of the piston on the 

cylinder head the bolts were subjected to severe energy loads and, 

as a consequence, broke. The trouble was remedied by using 

here referred to. But, by reducing the stress in the bolts, as stated, the rep¬ 

etitions of this lower stress did not cause failure. 

4 Halsey, F. A. “Materials and Constructions for Resisting Shock,” 

American Machinists, Sept. 9, 1915, p. 459. 
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bolts long enough to extend through both cover plates as shown 

in Fig. 225(6). 

(a) (6) 

Fig. 225.—Energy resistance of bolts increased by making them longer. 

118. Special Cases of Axial Energy Loads.—(a) Sudden Load.— 

A sudden load is a force that remains constant throughout the 

entire deformation, e, of the resisting member. Thus, if a sudden 

axial load P act on a bar the corresponding energy load, Ut sup¬ 

plied to the bar (that is, the work done on the bar in causing the 

deformation e) is Pe. 

Thus the expression for s in equation (214) becomes, 

-4 2 PeE 

al ’ 
(217) 

and since j = e, and Ee = s, this expression may be written 

P P 
s2 = 2—s or s = 2—. . . . 

a a 
(218) 

But if the load P were a static (gradually applied) load, — would 

be the unit-stress developed. Therefore, within the propor¬ 

tional limit, the unit-stress caused by a sudden load is twice as 

great as that caused by the same load when gradually applied. 

(6) Energy Load Due to a Falling Body.—If the energy load is 

delivered to a bar by a body of weight W falling through a height 

h before it comes in contact with the bar (see Fig. 229), the value 

of U in equation (214) is W(h-\-e), where e is the total elongation 

of the bar. Hence, 

4 2W(h+e)E 

al 
(219) 

But since e depends on s it will be convenient to express e in terms 
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of s, and at the same time to express s in terms of the unit-stress, 

si, and deformation, ei, that would be caused by the same weight 

if gradually applied. Thus, the above equation may be written: 

2_2 WE(h+e) 

al 

But — equals the unit-stress, si, due to the load W when grad¬ 

ually applied. Further, within the proportional limit, s = Ee; 

also e — el, and hence y=-• Therefore the above equation may be 
i 6 

written: 

S=2Slg+1), 

Now the ratio of unit-stress to unit-deformation is assumed to be 

constant within the proportional limit regardless of the kind of 

load that causes the stress and deformation. Hence, 

S_S\ 

€ ei 

Also, - =—, since e = el and ei = eih, 
e ei ■ 

in which si is the unit-stress and e\ the total deformation 

that would be caused by a static load W. Thus e=—- and hence 

.= \se 1 / 

Whence, the maximum stress is, 

s = si+sia/h-, . . . . . (220) 
\ ei 

in which s must not exceed the proportional limit. This equation 

shows that the stress due to an energy load caused by a falling 

weight may be greatly in excess of that caused by the same weight 

when gradually applied. 

Similarly, since 4 = e and €1, the elongation e of the bar due 
Jh hi 

to the falling weight is 

e = ci+eix/l + 4- 
2h 
ei 

(221) 
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in which e\ is the elongation of the bar that would be caused by the 

same weight if gradually applied. 
119. Working Stress and Working Value of Energy.—If the 

equivalent-static-load method (see Art. 114) is used in making 
allowance for the effect of the impact of the load, the working 
stress may be the same with impact loading as with static loading. 
Specifications usually require, however, slightly better material 
(more uniform in quality and tougher) for use in structures sub¬ 
jected to impact, such as, ships, locomotives frames and bridges, 
than for structures subjected to loads that are approximately static 
loads, such as buildings. 

If, on the other hand, the load is considered to be- an energy 
load, the working stress, or rather the working value of the energy, 

should be based on the modulus of resilience 

rial, particularly if the maximum usable energy of the material is 
the elastic energy, that is, if the resisting member would be struc¬ 
turally damaged if stressed above the proportional limit (or yield 
point) of the material. But the toughness of the material should 
also be considered in order to insure reserve energy for resisting 
overloads and high localized stresses (see Art. 147 and 148 for 
further discussion). 

A working value of energy should, of course, be considerably 
less than the modulus of resilience; the working value depends on 
the way the energy load is applied, on the service rendered by the 
member or machine, on the toughness of the material (its capacity 
to resist overloads, etc.), and on the form of the member with 
reference particularly to the way the energy is distributed through¬ 
out the member. In well designed machines (in which the energy 
load on any member is reduced to a minimum by the balancing 
of moving parts, by the use of springs, by adjusting the rela¬ 
tive stiffness of the component parts and of the connected mem¬ 
bers, etc.), the working value of the energy may be made one- 
fifth to one-tenth of the modulus of resilience. It should be noted 
that the resilience varies as the square of the stress developed 
(assuming E to be constant as in the case of steel), and hence 
when the energy absorbed by the member is reduced a given 
amount the corresponding stress is reduced considerably less than 
this amount. 

Table 5 should be helpful in selecting material for resisting 



ILLUSTRATIVE PROBLEMS 283 

energy loads and in selecting working values of energy to use in 
proportioning members subjected to energy loads. 

TABLE 5 

Average Values of Modulus of Resilience and Toughness 

Material 

Tensile 
Propor¬ 

tional 

Limit 
(lb. per 

sq. in.) 

se 

Tensile 

Ultimate 
Strength 

(lb. per 

sq. in.) 

su 

Tensile 
Modulus 

of Elastic¬ 

ity 
(lb. per 

sq. in.) 
E 

Ultimate 
Elonga¬ 

tion Per 

Inch of 
Length 

(in.) 

Cm 

Tensile 

Modulus 
of Resili¬ 

ence (in.-lb. 
per cu. in.) 

1 se2 

2 E 

Toughness 
in Tension 

(Represented 
by area under 
Stress-strain 

Diagram) 
(in.-lb. per 

cu. in.) 

Low carbon steel. 30,000 60,000 30,000,000 0.35 15.0 15,700 
Medium carbon steel.. 45,000 85,000 30,000,000 0.25 33.7 16,300 
High carbon steel. 

Special alloy steel 
75,000 120,000 30,000,000 0.08 94.0 5,100 

(Heat treated). 200,000 230,000 30,000,000 0.12 667.0 22,000 
Gray cast iron. 6,000 20,000 15,000,000 0.005 1.2 70 
Malleable cast iron. . . 20,000 50,000 23,000,000 0.10 17.4 3,800 
Rolled bronze. 
Timber (Hickory) .... 

40,000 

5,500* 

65,000 

10,000* 
14,000,000 
2,400,000* 

0.30 57.2 

6.32* 

15,500 

* In compression. The effectiveness of timber for resisting energy loads is greater than 

that indicated by the value of the resilience given in the table, due in part to the fact that 
timber may be stressed somewhat above its proportional limit without destroying its use¬ 

fulness; that is, the properties of resilience and toughness are not sharply defined. 

ILLUSTRATIVE PROBLEMS 

Problem 219. Fig. 226 shows two bolts with square threads; they have 
the same dimensions except that one has the shank turned down to a diameter 
equal to that at the root of the threads for a length of 10 in. If both bolts 

Fig. 226. 

are made of soft steel with a tensile proportionality limit of 32,000 lb. per 
sq. in., find the axial static load and the axial energy load that each bolt 
will resist when stressed to the proportionality limit. 
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Solution.—Static Loads.—The static loads P that the two bolts can resist 

are equal since the least cro&s-sectional areas are equal. Thus, 

P = as =^-^^-32,000 = 2,265 lb. 
4 

Energy Loads.—The cross-sectional area, a\, of each bolt at the root of the 

threads is 0.0706 sq. in. and a2 of the shank is 0.1963 sq. in. Hence when the 

unit-stress $i in the first inch of the bolt (the threads are neglected) is 32,000 

lb. per sq. in. the unit-stress s2 in the shank of the bolt is only 

^-^-^X32,000 = 11,520 lb. per. sq. in. 
0.1963 ’ ’ 

Therefore, the energy load U that can be absorbed by the bolt in Fig. 226(a) 

when stressed to 32,000 lb. per sq. in. is 

1 si2 1 s22 

U = 2jaih+2¥a2h 

1 (32,000)2 

2 30,000,000 
0.0706X1 + 

1 (11,520)2 

2 30,000,000 
X0.1963X17 

= 1.21+7.38 = 8.59 in.-lb. or 0.715 ft.-lb. 

Likewise, the maximum energy load that can be applied to the bolt in Fig. 

226(6) without causing a stress greater than the proportional limit is 

TJ 1 Sl2 7 i 1 *22 7 

U = 2~Ea'll+2ja‘h 

1 (32,000)2 

2 30,000,000 
0.0706X11 + 

1 (11,520)2 

2 20,000,000 
0.1963X7 

= 13.3+3.05 = 16.4 in.-lb. or 1.36 ft.-lb. 

Therefore, a body weighing only 0.715 lb. falling a distance of only 1 ft. 

would supply enough energy to the bolt in Fig. 226(a) to stress it to the pro¬ 

portional limit provided all the energy were absorbed by the bolt, whereas a body 

weighing 2265 lb. would be required to cause the same stress if its weight were 

gradually applied to the bolt. Further, turning down the shank of the bolt 

as shown in Fig. 226(6) nearly doubles the energy resistance of the bolt without 

affecting its static resistance. 

The results found in this problem further emphasize the importance of a 

uniform distribution of stress throughout a body that is required to resist 

energy loads. The results also indicate that energy loads would be extremely 

serious if the energy did not distribute itself throughout the whole structure 

or machine, or if it did not dissipate itself in the ways stated in Art. 115. 

These facts are further emphasized in the next problem. 
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Problem 220. In Fig. 227 is shown a punching machine. The fly wheel A is 

made to rotate by means of friction discs (not shown); it supplies the energy 

required to punch a f-in. hole through a f-in. steel plate. The diameter of the 

screw at the roots of the threads is 4 in. and the length of the screw beneath 

the frame is 10 in. 

(a) Find the maximum compressive unit-stress in the stem of the screw 

assuming that the load is a static axial load. (6) Find the maximum unit- 

stress, assuming that the load is an energy load and that the screw absorbs 

all the energy, (c) Find same as under (6), assuming that the machine frame 

absorbs three-fourths of the energy and the screw the other fourth. 

Solution.—(a) The maximum force P exerted on the punch, if the ulti¬ 

mate shearing unit-stress of the plate is 60,000 lb. per sq. in., is 

P = shearing area X 60,000 

= Trd X t X 60,000 = 7r| X f X60,000 

= 103,000 lb. 

And the unit-stress in the screw due to a static load of 103,000 lb. would be 

P 

a 

103,000 

7t(2)* 
= 8210 lb. per sq. in. 

(6) Tests show that the work diagram for the punching of steel plates is 

approximately that shown by the heavy line in Fig 228, and that the area 

under the work diagram is equal, approximately, to the area under a triangular 

diagram (Fig. 228) in which the maximum pressure is that required to develop 

a shearing unit-stress of 60,000 lb. per sq. in. in the steel in order to punch 
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the hole. Hence, the work done in punching the hole as represented by the 

area under the triangular diagram is 

P 103,000 5 

y=2X< = -t-X8 

= 32,200 in.-lb. 

If all of this work were stored in the part of the screw between the plate 

and the machine frame and none in the machine frame, the unit-stress in 

the screw would be 

WE 12X32,200X30,000,000 

~aT~\l 12.56X10 

= 124,000 lb. per sq. in. 

provided that this value is less than the proportional limit. 

(c) But the frame is not rigid, and hence probably a considerable part of 

the work done by the plate on the punch and screw is stored in the frame of 

the machine. If three-fourths of the work is used in deforming the frame 

then the value for U in the above expression is 8050 in.-lb. and the unit-stress 

becomes 

s = 62,000 lb. per sq. in. 

It is clear from the above results that a large part of the energy delivered 

to the screw is transmitted on to the machine frame. And, in general, the 

distribution of energy throughout the whole machine insures the safety of the 

machine; consideration of this fact is of great importance in the design of 

various types of machines and structures. 

The results of this problem also suggest the desir¬ 

ability of a study of existing machines when designing 

members that are subjected to energy loads. 

PROBLEMS 

221. A body A, Fig. 229, having a weight of 20 lb. 

falls a height A of 4 ft. when it comes in contact with 

the end of a rod having a length l of 6 ft. (a) If the 

rod is made of soft steel having a proportional limit 

of 30,000 lb. per sq. in. what cross-sectional area 

should the rod have in order to prevent the unit- 

stress from exceeding the proportional limit? (b) If 

test specimens of the steel when tested had an ulti¬ 

mate strength of 60,000 lb. per sq. in. and an elongation 

of 30 per cent estimate the weight of A required to 

rupture a rod having a diameter of 0.25 in. (Note: 

All the energy of the falling weight is assumed to be 

absorbed by the rod.) 

Ans. (a) a = 0.897 sq. in.; (6) IF = 684 lb. 
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222. If the rod in Problem 223 were a stick of oak having a proportional 

limit of 3500 lb. per sq. in. and a modulus of elasticity of 1,800,000 lb. per sq.in., 

what should be the least cross-section of the stick to prevent the stress from 

exceeding the proportional limit? Ans. a = 3.92 sq. in. 

223. The piston rods of the forging hammers in a certain steel plant fre¬ 

quently broke, and when they were finally replaced by a higher carbon steel 

the trouble ceased. If the proportional limit of the soft steel was 32,000 lb. 

per sq. in. and that of the higher carbon steel was 50,000 lb. per sq. in., how 

much more energy could the higher carbon steel rod absorb without being 

stressed above the proportional limit? Note: The breaking of the rods was 

probably due to the fact that the stress was repeated (repeated stress is dis¬ 

cussed in the next chapter), but this was the secondary cause of the failure. 

(See footnote 2 of Art. 117.) 

0 0.02 0.04 0 0.002 0.004 
Unit-deformation 

Fig. 230.—Stress-strain diagrams of two grades of steel. 

224. Fig. 230 shows stress-strain diagrams for medium carbon steel, 

(about 0.30 per cent carbon) and for high carbon steel (about 0.80 per cent 

carbon), (a) If a bolt of medium carbon steel is stressed just to its propor¬ 

tional limit by an energy load of 25 foot-pounds, how large an energy load 

will a bolt of the same size of the 0.80 per cent carbon steel resist when stressed 

to its proportional limit? (6) What will be the ratio of the energy loads that 

will cause rupture of the two bolts? Ans. (a) 56.2 ft. lb.; (b) 6.5 approx. 

225. In Fig. 231 are shown stress-strain diagrams for cast iron and for 

steel castings having about 0.20 per cent of carbon. Owing to the greater 

strength of steel the cross-sectional area of a steel casting for railway service 

(car couplers for example) is made only 0.4 as great as that of a cast-iron cast¬ 

ing. What will be the relative resistance to rupture, when subjected to an 

axial energy load, of the steel coupler and the cast-iron coupler if the lengths 

are the same? Since the service of a car coupler is not destroyed by perma¬ 

nent deformations and since in railway service such deformations are very 

likely to occur, the ultimate rather than the elastic energy loads are the gov¬ 

erning factors. Ans. 18.4 times as great. 

226. A tension member in a certain machine is subjected to an energy 

load. If the member can be given a permanent deformation without destroy¬ 

ing its usefulness and can be made of either cast iron or oak, which material 
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should be used provided that the strength of the member is the only factor to 

be considered (make use of Fig. 231)? Ans. Oak. 

0.01 0.02 0.03 0.04 0.05 0.06 
Uni t-deformation 

Fig. 231.—Stress-strain diagrams. 

227. A bar 3 ft. in length and \ sq. in. in cross-sectional area is stressed 

to its proportional limit by an axial energy load U. If the diameter of the 

bar is turned down to one-half of its original value over one-fourth of its 

length, what is the value of the energy load that will stress the bar to its pro¬ 

portional limit? 

120. Stresses in Beams Due to Energy Loads.—The amount of 

energy that a beam will absorb when stressed within the propor¬ 

tional limit of the material depends on the type of beam (canti¬ 

lever, simple, fixed, etc.) and on the type of load (concentrated, 

distributed, etc.) in addition to the form and dimensions of the 

beam. 

Simple Beam with Concentrated Load at Center.—Let it be 

required to find the maximum stress caused by an energy load U 

applied at the center of a simple beam, when the stress in the beam 

does not exceed the proportional limit of the material. Now the 

energy that can be stored in a beam is assumed to be the same when 

subjected to a gradually applied load as when subjected to an 

energy load due to a moving body. Thus the expression for the 

energy load U that can be absorbed by the beam when the stress 

does not exceed the proportional limit may be found as follows: 

Let a simple beam having a span length of l feet be loaded with 

a gradually applied concentrated load at the mid-span, the final 

value of which is P pounds. The relation between the load P, 
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and the deflection, A, of the beam is shown by the curve in Fig. 

232(6). The energy load U that can be absorbed by the beam 

(which is equal to the work done on the beam as a gradually 

applied load increases from zero to the value P (represented hy 

Fig. 232.—Energy resistance of beam; load at center. 

AB in Fig. 2326) is represented by the area OB A, and may be 

found from the expression, 

U=iPA. 

But from Art. 36 and 47 we have 

Therefore 

Pl = sl 
4 c 

1 P73 
and 

U 6 c2 E 
(222) 

But I = ak2 (Art. 163) in which k is the radius of gyration of the 

cross-sectional area with respect to the neutral axis. Hence 

rr 1 fc2 s2 7 

U~6 c2 £7° 
or 

cV6 (UE 

k \ al 
(223) 

If U is expressed in inch-pounds, E in pounds per square inch, a. 
in square inches, and k, c, and l in inches, s will be expressed in 

pounds per square inch. 
k2 

Since the numerical value of the ratio is always the same 

for similar shaped sections, the amount of energy that a horizontal 

rectangular beam will absorb when the short dimension is vertical 

will be the same as that absorbed when the long dimension is* 

vertical. 
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PROBLEMS 

228. Show that if the beam has a rectangular cross-section equation 

(223) reduces to 

t/ = —= -)aZ,.(224) 
18 E 9 \2 El ’ 

which shows that the energy load which this beam can resist is only one- 

ninth as large as the energy load it could resist if it were used as a tension 

member and stressed to the same maximum value s. 

229. Show that if the beam has a circular cross-section, equation (223) 

reduces to 

U = —-al=— -\l. 
24 E 12 \2 EJ 

(225) 

Simple Beam with Uniformly Distributed Load.—The relation 
between a gradually applied load-and the deflection would be 

similar to that shown 
in Fig. 232(6). The 
final values of the load 
and maximum deflec¬ 
tion are W and A, 
respectively. The de¬ 
flection at any section 
is y and the load that 
aGts through this dis¬ 
tance is wdx (Fig. 233). 
Hence the energy load 

U that can be applied (which is equal to the work done on the 
beam) is 

U= f (iwdx-y), 
Jo 

and by making use of the expression for y found in Art. 46, we have, 

tt 1 P , W (IH h? , 
U~2'Jg wdxm\W“12+24 

Fig. 233.—Energy resistance of beam; uniform 

load. 

Hence 

_ 1 w2 /l5 l5 l5 \ 

— 2 ^/\48~48 ' 120 * 

U = 
1 w2l5 

240 ^El (226) 
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But w may be expressed in terms of the maximum unit-stress 

in the beam by means of the flexure formula, Art. 34; namely, 

\wl2 = —. Therefore 
o o 

2J5 

El 

hence 

= i 1S1 
15c2JSf 

TT _ 4 /c2s2 

17 15 c2E°^' 
(227) 

PROBLEMS 

230. Show that if the beam has a rectangular cross-sectional area equa¬ 

tion (227) reduces to 

4 
TJ - 

45 E 
-al -16 3* (228) 

which shows that the energy load which this beam can resist is only as 

large as the energy load it could resist if it were used as a tension member 

and subjected to the same maximum unit-stress. 

231. Show that for a beam having a circular cross-sectional area equation 

227 reduces to 

al. (229) 

121. Effect of Form on Energy Resistance of Beams.—Equa¬ 

tions (223) and (227) and the equations given in Problems 228 

to 231 show that the material in a beam having a constant 

cross-section is inefficient in absorbing energy. For example, the 

expression in Problem 228 shows that a rectangular beam, when 

loaded at the mid-span with a concentrated load, can absorb only 

one-ninth as much energy as the same beam could absorb if all the 

material in the beam were stressed to the same degree. 

The inefficient use of material in a beam having a constant 

cross-section for resisting an energy load arises from two causes: 

(1) since the bending moment is relatively small at sections near 

the supports (for simple beams) the unit-stress, even in the outer 

fibers at these sections, is necessarily small, and hence the material 

toward the ends of simple beams can absorb very little energy; and 
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(2) the material near the neutral plane throughout the length of 

the whole beam can develop only small stresses and hence can 

/I s2\ 
absorb only a small amount of energy per unit volume (o^)* 

The first of these difficulties is largely overcome in leaf springs 

by making the leaves of gradually decreasing length (Fig. 234) 

so that the moment of inertia of the cross-sections decreases towards 

the supports approximately in proportion to the bending moment. 

Incidentally it is well to note that a leaf spring absorbs a consider¬ 

able amount of energy due to friction between the leaves. 

The second of the above difficulties may be overcome partly 

by placing as much of the material as far from the neutral surface 

as practicable, as for example, in the form of an I-section. If now 

a simple beam with an I-section is also made so that the cross- 

sectional area decreases towards the supports, as is sometimes done 

in forged axles, etc. (Fig. 235), the resistance of the beam to energy 

loads is very much greater than that of a beam having a constant 

cross-section that would have the same static strength as the beam 

with the variable cross-section. 

It is clear, therefore, that when a beam is subjected to an energy 

load the distribution of the stress in the beam should be as uniform 

as possible throughout the beam so that the energies absorbed by 

all unit volumes will be approximately equal. 

Again, the energy absorbed by a beam as shown by equations 

(223) and (227) increases with the volume of the beam provided 

the other influencing factors discussed above are constant. Thus, 

if a simple beam has a constant cross-section the amount of energy 

it will absorb increases as the length of the span of the beam is 

increased, whereas the static strength decreases with an increase 

in the length of the span. 
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122. Special Cases of Energy Loads on Beams.—Energy 

Load Due to a Falling Weight.—It is convenient frequently to 

express the unit-stress caused by an energy load, due to a falling 

weight W, in terms of the unit-stress that would be caused by the 

force W when gradually applied. Similarly, the deflection caused 

by a falling weight W may be expressed in terms of the deflection 

that would be caused by a load W when gradually applied. This 

may be done by substituting in equation (223) or (227) the value 

of U for the beam in question similar to the method used in Art. 

118; or it may be done as follows: 

If a body having a weight W falls from a height h on a simply 

supported beam the maximum deflection, A, of the beam will be 

proportional to the maximum unit stress, s, developed and the 

ratio of s to A is assumed to be the same, within the proportional 

limit, as that of the unit-stress, si, to the deflection, Ai, caused 

by a static load equal to W, thus, 

A___s 

Ai ~ sd 
(230) 

provided the proportional limit of the material is not exceeded. 

Further, if Q is a static load that causes a deflection, A, equal 

to that caused by the energy load, the work done by Q, which is 

\QA, will be equal to the energy supplied or given up by the 

falling body, and since the assumption is here made that all the 

energy of the falling body, W(h+A), is absorbed in stressing the 

beam, then JQA will be equal to the energy absorbed by the beam. 

Hpti pp 

W(h+A)=iQA.(231) 

But the static loads are proportional to the stresses they develop 

and hence from (1) we have 

A _ s __Q 

Ai si W’ 
(232) 

By combining (231) and (232) there is found 

s = si+si<^|l+^ and A = Ai+Ai-^l+— . . (233) 

in which s and A are the unit-stress and deflection, respectively, 

due to the falling body, and si and Ai are the stress and deflec- 
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tion, respectively, due to a static load equal to the weight of the 

falling body. Expressions for si and Ai are given in Chapters 

V and VI. Equations (233) show that a body which causes a 

relatively small stress and deflection when applied as a static 

load may cause a large stress and deflection if allowed to drop on 

the beam through a relatively short distance. 

Sudden Load.—If the value of h in equation (233) is zero, that 

is, if the load W is a sudden load (see Art. 118 for definition of 

sudden load), then the values of s and A due to the sudden load 

are 
s = 2si and A = 2Ai.(234) 

Therefore, a sudden load applied to a beam will cause twice the 

stress and twice the deflection that will be caused b}^ the same 

load when gradually applied. 

123. Deflection Due to Any Energy Load.—If an impact 

load U is delivered to a beam by any means other than that of a 

falling weight the deflection may be found from equation (233) as 

follows: After estimating the value of the energy U delivered to 

the beam, a value for W may be selected arbitrarily and a value of 

h that would be required to cause this weight W to deliver to the 

beam an amount of energy equal to U may be found. The unit- 

stress si and the deflection Ai that this weight would develop if 

applied gradually may also be found. Thus with values of h and 

Ai known, equation (233) may be used to find the value of A. A 

value of s in equation (233) may also be found by a similar method, 

but equations (223), (227), etc., are preferable for this purpose. 

ILLUSTRATIVE PROBLEM 

Problem 232. The proportional limit for hickory may be taken at 3000 

lb. per sq. in., and its modulus of elasticity at 1,500,000 lb. per sq. in. (a) 

Will a weight of 20 lb. falling 6 in. on the center of the span of a hickory 

beam 4 in. square cause a unit-stress above the proportional limit, if the beam 

has a span of 3 ft.? (Assume that the supports of the beam are rigid and that 

all the energy delivered by the falling weight is absorbed by the beam.) (6) 

How many inches will the beam deflect? (c) What should be the length 

of the span to make the stress equal 3000 lb. per sq. in.? 

Solution.—(a) First Method.—The deflection of the beam will be neglected 

in comparison with 6 in. and hence the energy U delivered to the beam is 

*7 = ^ = 20X6 = 120 in .-lb. 
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The unit-stress caused by this energy load is (see Prob. 228). 

18 UE ll8X 120X1,500,000 

al \ 4X4X36 

= 2370 lb. per sq. in. 

(a) Second Method.—If the deflection of the beam is not neglected the 

maximum unit-stress s developed in the beam is 

S=Si+S 

The unit-stress Si due to a central static load of 20 lb. is 

Me 1 c 1 2 
. = _7“ = “PL -= - X20X36X—77- 

7 4/4 *(4)‘ 

= 16.9 lb. per sq. in. 

The maximum deflection, Ai, of the beam caused by a central static load of 

20 lb. is 

1 PI3 1 20 X (36)3 

1 ~48 E/~48 1,500,000X^(4)4 

= 0.000608 in. 
Hence, 

I 2X6 
5 = 16.9 + 16.9X l+„ ~ 

\ 0.000608 

= 16.9+2365 

= 2382 lb. per sq. in., 

and hence the error introduced in the first method of solution by neglecting 

the deflection of the beam is very small. 

(6) The maximum deflection of the beam is 

I 2h 
-A1+A1yjl+- 

= 0.000608+0.000608 X140 

= 0.000608+0.0853 

= 0.0859 in. 

(c) Since the deflection may be neglected in determining the unit-stress, 

we have 

/l8UE 
s = J—— = 3000. 

\ al 
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Hence 
18 UE 18X120X1,500,000 

^ ~ a X (3000)2 _ 16 X (3000)I 2 

= 22.5 in. 

PROBLEMS 

233. Three beams, A, B and C, all of the same dimensions are arranged 

as shown in Fig. 236 similar to one type of draft gear. Each beam is 3 in. 

square and has a span of 12 in. (a) 

What static load applied at the mid-span 

will cause a maximum unit-stress of 

- ^ 20,000 lb. per sq. in.? (6) Will the beams 

I I r-i when arranged as shown in Fig. 236 

-wL resist a greater static load than any one 

* of the beams? (c) What is the weight 

Fig. 236. 0f a body which, when allowed to fall 

a height h of 8 in. will cause a stress 

of 20,000 lb. per sq. in? (d) What stress would the weight in (c) cause if it 

were resisted by only one of the three beams? Ans. (a) 30,000 lb.; (5) no; 

(c) 30 lb.; (d) 34,500 lb. per sq. in. 

¥ 

234. A steel bar 2 in. in diameter and 3 ft. long remains in a horizontal 

position as it falls a distance of 4 ft. and strikes rigid supports at its ends. 

If all the energy is absorbed by the beam what unit-stress is developed in the 

beam, assuming that the proportional limit is not exceeded. 

235. A high carbon steel cylindrical shaft has a diameter of 4 in. It is 

used as a simple beam with a span of 6 ft. The proportional limit of the mate¬ 

rial is 60,000 lb. per sq. in. If a moving body strikes the beam at mid-span 

and two-thirds of the energy of the moving body is absorbed by the beam, how 

much energy does the body possess if it produces a unit-stress equal to one- 

half of the proportional limit? Ans. 1690 in-lb. 



CHAPTER XIV 

REPEATED LOADS. FATIGUE OF METALS 

124. Introduction.—A repeated load is a force that is applied 

many times to a member, causing stress in the material that con¬ 

tinually varies, usually through some definite range. If a stress 

is developed in a member and is then released the member is said 

to have been subjected to a cycle of stress. Further, if a tensile 

stress has been developed and when released a compressive stress 

is developed and this stress is then released, the member is said 

to have been subjected to a reversed cycle of stress or, briefly, to a 

reversal of stress; the reversal of stress is said to be complete if the 

opposite stresses are of equal magnitudes. For example the piston 

rod of a steam engine that runs at 300 r.p.m. 10 hours per day 

300 days per year for 10 years is subjected to 540,000,000 cycles 

of approximately complete reversals of axial stress; a car axle is 

subjected to about 50,000,000 complete reversals of bending stress 

in its normal “life”; a band saw in a normal service of about 

two months is subjected to about 10,000,000 cycles of stress, 

the stress in each cycle ranging from approximately zero to a 

maximum, etc. 

Experience and experiments have shown clearly that the 

resistance of rolled or forged iron and steel (wrought ferrous metals) 

to repeated loads depends on very different action in the material 

than does the resistance to static or impact loading. For example, 

iron and steel will rupture when subjected to millions of reversals 

of stress not only when the calculated unit-stress in the material 

is less than the static ultimate strength of the material but even 

when the calculated unit-stress is less than the static proportional 

limit. 

The failure of a material caused by repeated loads is a gradual 

or progressive failure. The failure seems to start at some point in 

the material at which the stress is much larger than the calculated 

stress, and this high localized stress develops a small crack which 

gradually spreads, as the load is repeated, until the whole member 

297 
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fails. The apparent loss of strength of a material due to repeated 

stress is frequently called fatigue) thus a fatigue failure is a failure 

caused by repeated loads. Failures of various machine members 

due to repeated stress have frequently occurred in service: Rail¬ 

way axles, steam turbine shafts and discs, crank shafts, piston 

rods, valve rods, springs in automobiles, etc., give much trouble in 

this respect. 

Experimental Investigations.—In 1870 Wohler published1 the 

results of an extensive series of tests of various grades of iron and 

steel subjected to repeated direct tensile and compressive loads, 

to repeated bending loads, and to repeated torsional loads. The 

tests were carried out for the Prussian Railways during a period 

of about ten years. They are considered a classic in this field 

of investigation and until recently were the main source of our 

knowledge of resistance of material to repeated loads. 

The number of cycles of stress to which the material was sub¬ 

jected in Wohler’s tests was usually less than 1,000,000, although 

a small number of specimens were stressed 10,000,000 times, a 

very few specimens were stressed 40,000,000 times, and one spe¬ 

cimen 132,000,000 times. Although Wohler’s experiments gave 

reliable information for the machines and materials used at that 

time, the development of high speed machinery and of alloy and 

heat-treated steels have created a need for further experimental 

investigations. In recent years several important investigations 2 

have been made that have added much to our knowledge of the 

subject. 

125. Endurance Limit.—The endurance limit of a material 

is the maximum unit-stress that can be repeated, through a definite 

cycle or range of stress, an indefinitely large number of times 

without causing the material to rupture. As will be discussed 

later, the larger the cycle or range of stress is made the smaller the 

value of the endurance limit becomes; but when the term endur¬ 

ance limit is used without any limiting' statement as to range of 

stress it will be understood to be the endurance limit with com¬ 

pletely reversed cycles of stress. 

1 A summary of Wohler’s work is given in English in “ The Testing of 

Materials of Construction ” by Unwin. 

2 See Bulletins 124, 136 and 142 of the Engineering Experiment Station 

of the University of Illinois; a bibliography is given in Bulletin 124 and ref¬ 

erences to later work is given in Bulletins 136 and 142. 
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S-N Diagrams.—If several specimens are cut from the same bar 

of forged or of rolled steel3 and are subjected to repeated complete 

reversals of stress (see Art. 156 for description of repeated-stress 

testing machines), it will be found that when a specimen is stressed 

nearly to the ultimate strength of the material in each cycle of 

stress the specimen will rupture after being subjected to a small 

number of cycles of stress; if a second specimen is tested in the 

same way but stressed slightly less than the first, a larger number 

of reversals of stress will be required to cause the specimen to 

rupture. Now, if a series of such experiments are carried out, 

the maximum unit-stress in any specimen being somewhat less 

than in the preceding specimen, the relation between the value of 

the completely reversed unit-stress, s, and the number of reversals y 

N, required to rupture the specimen will be found to be repre¬ 

sented by a curve similar to that shown in Fig. 237 in which stresses 

are plotted as ordinates and numbers of reversals as abscissas. 

The curve in Fig. 237 is 

called an s-N curve, and the 

ordinate to the s-N curve 

where the curve has become 

approximately horizontal is 

taken as a measure of the 

endurance limit of the ma¬ 

terial as defined above. Thus 

the endurance limit (sr) ob¬ 

tained from the curve in 

Fig. 237 is approximately 

±19,000 lb. per sq. in. 

That is, this material will rupture when subjected, in bending, 

to several million cycles of completely reversed stress if the max¬ 

imum unit-stress in each cycle is slightly greater than 19,000 lb. 

per sq. in. 

Another way of obtaining an s—N curve and the endurance 

limit is to plot values of the logarithms of s and N (or the equiva¬ 

lent of this, namely, to plot values of s and N on logarithmic paper). 

When this is done the s-N curve (Fig. 238) is a straight sloping 

line until it changes its slope rather abruptly and becomes hori- 

3 Sufficient experimental data for castings of iron or steel and for non- 

ferrous metals from which to draw definite conclusions are not yet available. 

Reversals of Stress Causing Failure, 
in Millions (N) 

Fig. 237.— An s-N diagram for steel 

subjected to completely reversed 

cycles of bending stress. 
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zontal. The unit-stress at which the change of slope occurs is 

taken as the measure of the endurance limit (sr). 

Another convenient method of obtaining an s-N curve and the 

endurance limit is to plot the unit-stresses as ordinates and the 

logarithms of the numbers of reversals as abscissae, sometimes 

called semi-logarithmic plotting. The curves thus obtained are 

very much the same as those in Fig. 238. Thus, in Fig. 239, are 

shown s-N diagrams for several grades of steel plotted in two 

ways: In Fig. 239(a) values of s and N are plotted as Cartesian 

coordinates and in Fig. 239 (b) is shown the semi-logarithmic 

plotting of the same values. 

As shown in Fig. 238 and 239, wrought ferrous metals, if 

subjected to complete reversals of stress, will usually fail after 

resisting 1,000,000 to 5,000,000 cycles of stress, when the max¬ 

imum stress in each cycle is slightly above the endurance limit. 

(Compare these values with the probable number of repetitions 

of stress in the “ lifetime ” of various members as given in Table 6 

and determine if these members can safely be stressed above the 

endurance limit of the material.) 

TABLE 6 

Part of Structure or Machine 

Approximate num¬ 

ber of repetitions of 

stress in the “ life¬ 

time ” of the struc¬ 

ture or machine. 

Railroad bridge, chord members. 

Elevated railroad structure, floor beams. 

Railroad rail, locomotive wheel loads. 

Railroad rail, car wheel loads. 

Airplane engine, crankshaft. 

Car axles... 

Automobile engine, crankshaft. 

Line shafting in shops. 

2,000,000 

40,000,000 

500,000 

15,000,000 

18,000,000 

50,000,000 

120,000,000 

360,000,000 

1,000,000,000 

15,000,000,000 

250,000,000,000 

Steam engine, piston rods, connecting rods and crank¬ 

shafts . 

Steam-turbine shafts. 

Steam-turbine blades. 

126. Localized Stress and Fatigue Failure.—When a ductile 

steel specimen is caused to fail by a gradually increasing (static) 
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Fig. 238.—Logarithmic s-N diagrams for steel subjected to 
reversed cycles of bending stress. 

completely 

(a) (&) 

Fig. 239.—s-N diagrams for steel subjected to completely reversed cycles of 

bending stress; (a) Cartesian plotting; (6) semi-logarithmic plotting. 
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load there is visible evidence of structural damage (plastic defor¬ 

mation) and of the approaching of failure, considerably before the 

failure occurs. If a specimen of the same material, however, is 

caused to fail by a repeated load, there is no plastic deformation or 

other warning of the approaching of failure. Thus the fatigue 

failure of a ductile steel is similar to that of a static failure of a 

brittle material; the fractured area of a ductile steel specimen that 

is broken by repeated loads, usually presents a crystalline appear¬ 

ance similar to that of a coarse-grained brittle material, whereas 

the fractured area of the ductile steel specimen when broken by a 

static load presents a “ silky ” or “ fibrous ” appearance. 

These observations suggested the crystallization theory of failure 

of steel due to repeated stress. It was thought that, in service, 

the repeated application of a load changed the steel from a fibrous 

ductile material to a crystalline brittle material. It is now known, 

however, that iron and steel are always crystalline and that the 

crystalline theory is entirely erroneous. 

Localized Stress Theory.—The most satisfactory explanation of 

a fatigue failure is the localized stress theory, the main features 

of which may be explained as follows: 

In determining the relation between stresses and static loads 

as expressed by the equations developed in the preceding chapters 

it was assumed 

1. That the material was homogeneous; that is, there existed 

no discontinuities in the material and no abrupt changes 

in the properties of the material throughout the body. 

2. That there was a definite regularity of stress distribution 

on any section of the member: that is, no discontinuities 

or abrupt changes occurred in the distribution of the stress 

over the section. 

It is known, however, that these conditions never exist in struc¬ 

tural members; metals for example are composed of crystalline 

grains whose strength and stiffness vary, and there are local con¬ 

centrations of stress (localized stresses) at various portions of a 

member that may be much larger than the calculated values based 

on the assumed regularity of distribution. These localized stresses 

and irregularities in the stress distribution are due (1) to discon¬ 

tinuities in the material itself such is small flaws, fissures, non- 

metallic inclusions, etc., at the edges of which high stress exist 

and discontinuities in the properties of the material due to the 
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variation in the strength and stiffness of the crystalline grains 

from those assumed for the material as a whole. Both of these 

causes of localized stress will be referred to as internal disconti¬ 

nuities, and (2) to external discontinuities of the material such as 

abrupt changes of sections, etc., where the stress distribution is, 

as a rule, radically different from that assumed. 

Now when a ductile material is subjected to a static load, 

localized stresses that are considerably greater than the yield- 

point of the material may be developed (in fact the localized 

portion may even rupture) without seriously affecting the strength 

or deformation of the member as a whole, and hence the above 

assumptions are, in general, justified when the load is a static 

load (or is applied only a few times). But when the load is 

applied a very large number of times these localized stresses have a 

determining effect on the strength of the member (see Appendix 

III). 

It seems clear that if a steel specimen ruptures when subjected 

to a repeated load, the stress in the material must have reached 

its ultimate strength even though the calculated stress may be less 

than the static proportional limit of the specimen. The rupture 

starts at a point of high localized stress or at a point where a weak 

crystal occurs, and gradually spreads until the whole member 

ruptures. The first experimental evidence of the gradual spread 

of the area of rupture was obtained by Ewing, Humphrey and 

Rosenhain.4 They found that when the localized stress in cer¬ 

tain crystals becomes sufficiently great the crystals yield by micro¬ 

scopic movement or sliding along their cleavage planes: These 

planes are called slip planes and their traces on a polished section 

of the member are seen under the microscope as dark lines, called 

slip lines or slip bands (see Fig. 240). For example, slip lines 

were detected in some of the crystals of a Swedish iron specimen 

when subjected to a few complete reversals of stress of ±20,000 

lb. per sq. in., although the static yield-point and ultimate strength 

of the material were 31,600 and 52,800 lb. per sq. in., respectively; 

after more rev( r ,als of stress were applied additional slip lines 

appeared and the original ones broadened. Finally, various 

groups of slip lines united forming a visible crack which gradually 

extended until rupture occurred. (See Fig. 2406.) 

4 Philosophic Transactions Royal Society A, Vol. 200, p. 241, 1903. 
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However, not all slip lines develop into cracks, and there may 

be a development of slip lines and, possibly, of small cracks without 

resulting in failure of the member. In fact, fatigue failures fre¬ 

quently are not due to the development of slip bands but are 

caused by direct tearing apart at the points of high localized stress 

with subsequent spreading of the area of rupture, resulting in a 

failure that gives no warning of its approach. But, in any case, 

the cause of the failure is the localized stress due to internal or 

external discontinuities which are neglected in the usual formulas 

in mechanics of material as developed in the preceding chapters. 

Fig. 240.—Photomicrographs of steel: (a) View before stressing, (6) view 

after application of several thousand reversals of large stress showing 

slip bands and crack. (Obtained by Prof. H. F. Moore.) 

For example, in Fig. 241, is shown the section of a ruptured 

bolt that failed after being subjected to many repetitions of a ten¬ 

sile load. The failure started at the root of the thread where 

high localized stress occurred and spread inwardly. The dark 

portions of the cross-section show the area over which the crack 

spread and the light portion shows the area of rupture over which 

the material gave way suddenly. 

127. Values of Endurance Limits with Completely Reversed 
Bending Stress.—Values of the endurance limits of several grades 

of steel when subjected to completely reversed bending stress are 

given in Table 7. Values of the static tensile proportional limits 

and of the tensile ultimate strengths of the steel are also given in 

the same table. 
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The values in Table 7 show that the endurance limit for com¬ 

plete reversals of stress may be considerably below the static 

proportional limit of the material. In other words, the ultimate 

resistance of steel to repeated loads is often considerably less than 

the static elastic resistance (proportional limit) of the material. 

Further, if a heat treatment greatly increases the static propor¬ 

tional limit it does not necessarily follow that the endurance limit 

is raised proportionally. In fact, tests show clearly that the endur- 

Fig. 241.—View of area of rupture of bolt that failed due to repeated stress, 

showing evidence of progressive failure. (Obtained by Prof. H. F. 

Moore). 

ance limit of steel bears a much more consant relation to the 

ultimate strength than to the elastic limit or proportional limit, 

and that tor most rolled or forged steels the endurance limit with 

completely reversed bending stress is approximately 0.45 of the static 

tensile ultimate strength (sr = 0A5su) as maybe seen by referring to 

Table 7. 

128. Relation of Endurance Limit with Direct Axial Stress to 
Endurance Limit with Bending Stress.—The endurance limit, sd, 

of a material when subjected to complete reversals of axial stress 
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(stress varying from a direct tensile to an equal direct compression 
stress) is found to be lower than the endurance limit, sr, of the 
same material when subjected to complete reversals of bending 
stress. 

A safe approximate value of sd for rolled or forged iron and steel 
is 

sd = 0.Qsr.(235) 

The reason why sd is less than sr is due probably to the fact that 
the load always is applied with some eccentricity and hence the 
stress in the specimen is greater than the calculated stress; and 
also to the fact that in the bending-stress specimen only the outer 
fibers are subjected to the maximum stress whereas in the axial- 
stress specimen all the fibers are subjected to the same nominal 
stress. 

129. Relation of Endurance Limits in Torsion and Bending.— 

The resistance of material to repeated shearing stress is of impor¬ 
tance in some machine members such as torsional springs, shafts, 
etc., and although the number of repeated stress tests with reversed 
torsion is much less than with reversed bending, the tests are rea¬ 
sonably consistent in showing that the endurance limit of steel 
with complete reversals of torsional shearing stress, denoted by 
(sr)„, is 0.55 time the endurance limit with complete reversals of 
bending stress. Thus, 

(sr)s — 0.55$r.(236) 

130. Localized Stress Due to External Discontinuities.—(a) 

Abrupt Change of Section.—The results of several independent- 
experimental investigations5 have shown that high localized 
stresses occur at abrupt changes of section of a member when the 
member is resisting a load. Consequently, a repeated stress 
specimen having an abrupt change of section such as a square 
corner, keyway, screw thread, groove, etc., is found to fail when 
the calculated stress (found by use of the ordinary equations of 
mechanics of materials) is lower than the endurance limit of the 
material as found from specimens of the same material that are 
free from abrupt changes of sections. The ratio, then, of the 
endurance limit of the material to the endurance limit of the spe¬ 
cimen with the abrupt change of section is a measure of the localized 

5 See Appendix III. 
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stress due to the abrupt change of section. For example, if the 

endurance limit of specimens free from abrupt changes of section 

is found to be 30,000 lb. per sq. in. and the endurance limit of 

specimens having given abrupt changes of section is found to be 

15,000 lb. per sq. in., then the actual (localized) stress in the latter 

specimens is twice the calculated stress. Thus, repeated stress 

tests may be used to determine the value of localized stress. (Other 

methods of determining localized stresses are discussed in Appen¬ 

dix III.) 

TABLE 8 

The Reduction in the Endurance Limit of a Specimen of Steel 

Subjected to Reversed Bending Due to Abrupt Change in 

Section; Specimens were 0.4 Inch in Diameter. 

Form of Section 
Reduction in Endur¬ 

ance Limit in Per 
Cent 

Groove with 10-in. radius. 0 
Groove with 1-in radius. 5 
Groove with j-im radius.. . 10 
Shoulder or notch with small fillet. 25 
Square shoulder. 50 
Sharp V-notch. 65 

It is very clear from the results in Table 7 that, in designing 

members that are subjected to repeated loads, sharp corners should 

be avoided as much as possible, and experience has emphasized 

the truth of this statement. For example, the gears, crank shafts, 

and connecting rods of the Liberty airplane engine, at first, fre¬ 

quently failed from repeated stress; the failure in the gears started 

at the sharp corner at the bottom of the teeth, of the crank shafts 

at the corner of the keyways, and of the connecting rods at the 

sharp corner where the connecting rod bolt-head fitted on the 

assembly. Further, the British found that, when a failure of an 

airplane crankshaft was due to a sharp corner, failure after failure 

would occur in engines of the same type in approximately the same 

number of running hours. The trouble in the Liberty motor parts 

finally was practically eliminated in all parts by adopting a small 

fillet of about in. radius at each corner. 
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(b) Surface Finish— Experiments 6 have shown clearly that 
the surface finish of a member has an appreciable effect on its 
endurance limit, the smoother finish giving the higher value for 
the endurance limit. Since scratches, tool marks, indentations 
due to cold pressing, etc., may be regarded as more or less abrupt 
changes of section, giving rise to localized stress, this effect of 
surface finish is to be expected. 

The results of experiments 6 show that a specimen having a 
surface produced b}^ turning a finishing cut in a lathe may have an 
endurance limit as much as 10 per cent less than a specimen having 
a surface produced by fine grinding, and somewhat rougher turn¬ 
ing may cause a reduction in the endurance limit of 20 per cent or 
more. Although fine grinding does not produce as good results as 
does polishing, it would probably be considered satisfactory for 
many commercial machine members. 

It is clear, therefore, that surface scratches due, for example, 
to grit in bearings, indentations due to hammer blows or high 
bearing pressure, tool and die marks in cold pressed work, etc., 
must be taken into account in estimating the resistance of a 
member to repeated loads. 

For example, repeated stress failures of the cold pressed water 
jackets on certain airplane engines have been found to be due to 
die marks. And, the observation of fractures that have occurred 
in service shows that slight surface scratches appear to determine 
the position of a fracture in steel subjected to reversals of stress. 

131. Working Stress with Repeated Loads.—The endurance 

limit of steel subjected to millions of cycles of stress is really the 
fatigue ultimate strength of the material since if the unit-stress 
developed in the material is greater than the endurance limit the 
material will rupture. Further, there is no unit-stress below the 
endurance limit at which the beginning of inelastic action or struc¬ 
tural damage can be detected, whereas with static loading the 
beginning of structural damage can be detected at stresses much 
below the static ultimate strength of the material since the pro¬ 
portional limit, yield point, etc., indicate the beginning of inelastic 
action or structural damage caused by static loads. It seems clear, 
therefore, that the working stress for steel members subjected to re¬ 
peated stress should be based on the endurance limit of the material. 

If, however, the endurance limit of the steel is not known 
6 Bulletin 124, Engineering Experiment Station, University of Illinois. 
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(see Art. 156 for machines and methods of testing) an approximate 

value of the endurance limit, may be found from the static ulti¬ 

mate strength of the steel since tests have shown, as stated in 

Art. 127, that the endurance limit for completely reversed cycles 

of stress may be taken with reasonable accuracy as 0.45 (or roughly 

0.5) of the static tensile ultimate strength of the material. 

Further, if the stress is not completely reversed, an approxi¬ 

mate value of the endurance limit for a given range of stress may 

be obtained from the endurance limit with completely reversed 

stress by means of equation (240) or (241) in Art. 132. 

Now it is important to note that the values of the endurance 

limits found from the usual laboratory tests are obtained with a 

specimen having a very gradual change in section and having a 

polished surface finish, and hence the endurance limit of the 

specimen may be considered to be the endurance limit of the 

material, the internal discontinuities being assumed constant for a 

given material. Again, it is only when these conditions exist 

that the endurance limit may be assumed to be 0.45 (or roughly 

0.5) of the static tensile ultimate strength of the material. 

Need for Margin of Safety.—As discussed in Art. 7, three of the 

reasons for selecting a working stress less than the maximum 

usable strength (yield point, etc.) of the material, in the case of 

static loading, are (1) that the actual loads to which the member 

will be subjected are seldom known with certainty, (2)that the actual 

stresses in a member, even if the member were subjected to known 

loads, may be considerably greater than those calculated by the 

usual formulas (as developed in the preceding chapters), since 

these formulas do not take account of the localized stresses due to 

various causes (see Art. 138 and 143) and (3) that the properties 

of the material vary, due to variation in the quality of the material, 

from those obtained from the tests of sample specimens. 

Now the uncertainty of the loads in the case of repeated loading 

is probably about the same as in static loading, and about the 

same allowance in selecting the working stress should be made for 

the uncertainty of the load with both types of loading. Further, 

the uncertainties in the calculated stresses in a member due to the 

presence of localized stress are probably no greater with repeated 

loading than with static loading, but the effect of localized stresses 

have a very much greater effect on the resistance of the material to 

repeated loads than on the resistance to static loads. 
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For, as discussed in Art. 126 and 143, and in Appendix III, when 

localized stresses that are considerably in excess of „ the calcu¬ 

lated stresses occur in a steel member that is subjected to static 

loads (and such localized stresses always exist) the material at the 

point where a localized stress occurs will yield, since the steel is 

fairly ductile, and the stress at this point will be relieved, thereby 

transmitting some of the excess stress to the surrounding, less- 

stressed material, and the resistance of the member as a whole 

will not be seriously affected by this action; whereas, if the same 

member were subjected to repealed loads, experience and experi¬ 

ments show that a minute crack would probably start at the point 

of high localized stress and would gradually spread, as the loads 

were repeated, until the whole member would rupture. 

Now, since localized stresses are so important in repeated 

stress members and since experimental data are now available by 

means of which a reasonably close estimate of the intensity of 

the localized stress in a member can be made, when the localized 

stress is due to external discontinuities such as abrupt changes of 

section, surface finish, etc., it seems unnecessarily indefinite 

to make allowance for localized stress in repeated-stress members 

by selecting, arbitrarily, low working stresses. 

Method of Calculating Maximum Stress.—The method of obtain¬ 

ing the maximum (localized) unit-stress due to external discon¬ 

tinuities is as follows: Calculate, according to the usual formulas 

used for static loading, the maximum unit-stress that the loads 

cause, and then multiply this unit-stress by a factor to obtain the 

intensity of the localized stress, the factor depending on the form 

of the member. The value of the factor is obtained from the 

results of repeated-stress experiments and from other methods 

discussed in Appendix III. Approximate values for these factors 

for steel members having various external discontinuities are given 

in Table 9. The value of the factor is unity if the member has a 

very gradual change of section and a very smooth surface, that is, 

if the member has no external discontinuities. 

Selection of Working Stress.—Now, as explained in Art. 126, 

localized stresses arise from internal discontinuities as well as 

from external discontinuities, and the localized stresses due to the 

internal discontinuities, such as the stresses that occur at the edges 

of the minute blowholes, pipes, etc., and at points of high-bearing 

stress of two or more crystals due to a disadvantageous arrange- 
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ment of the crystals, etc., cause a specimen even when free from 

external discontinuities to rupture, when subjected to repeated 

stress, at a calculated unit-stress less than the static elastic limit 

of the material. In other words, the unit-stress on some minute 
area in the specimen exceeds the ultimate strength of the material 

at that point even when the maximum calculated stress in the 

material is considerably less than the static elastic limit of the 

material. 
TABLE 9 

Maximum Localized Stresses Due to Various External Discontinuities 

Concentric Groove around 

Cylindrical Shaft: 

Ratio of maximum localized unit- 
Ratio of radius of groove or fillet to stress to computed maximum 

diameter of shaft. unit-stress in shaft. 

0.1. 2.0 
0.5.. 1.6 

1.0. 1.2 
2.0. 1.1 

Special Types of Abrupt Changes of 

Section and of Surface Finish: 

Square corner. 2.0 

Sharp V-thread. 3.0 

Whitworth thread. 2.0 

U. S. Standard thread.. 2.5 

Surface finish produced by lathe tool; 

(Scratches due to grit in bearings). 1.2 

Surface finish produced by a grinding wheel... 1.05 

But, there is no reliable way of detecting or of measuring the 

effects of internal discontinuities as can be done for the external 

discontinuities. Therefore, an allowance is made for the effect of 

these internal conditions by selecting a working stress as some 

proportion of the endurance limit found from the usual repeated- 

stress tests. Experiments indicate that specimens taken from 

the same bar of steel and made and tested as nearly alike as pos¬ 

sible rupture, when subjected to repeated loads, at calculated unit- 

stresses that may vary considerably, and the endurance limits of 

specimens taken from different bars of a shipment of steel of pre¬ 

sumably the same quality may vary greatly. 

Thus, even when the limiting values of the repeated loads are 

known (as for example in the case of a spring provided with 
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tops to prevent excessive deflection), and even when due allow¬ 

ance has been made, as discussed above, for the effect of the 

external discontinuities of the member, it is recommended that the 

working stress should not be greater than one-half the endurance 

limit in order to make allowance for the effect of internal dis¬ 

continuities, and that the working stress should not be greater 

than one-third of the endurance limit in order to make allowance 

for the uncertainties in the assumed loads, in addition to the uncer¬ 

tainties in the internal conditions of the metal. However, in using 

a working stress equal to one-third of the endurance limit it is 

assumed that the maximum calculated stress in the material is the 

localized stress arising from eternal discontinuities as discussed 

above, and not merely a nominal stress found from the ordinary 

equations of mechanics of materials. 

It is assumed throughout this chapter that the repeated loads 

are not applied with impact. If a member is subjected to repeated 

impact loads some additional allowance must be made for the effect 

of the impact, depending on the conditions of the problem. 

Again, some machine members in service are subjected to 

repeated stresses greater than the endurance limit and are not 

expected to resist these stresses indefinitely as for example, band 

saws for wood, wire rope running on sheaves, ball bearings, gun 

barrels, etc. 

ILLUSTRATIVE PROBLEMS 

Problem 236. The crank pin (Fig. 242) has a diameter, d, of 5 in. and a 

length of 6.25 in., these dimensions being determined from the allowable 

bearing pressure. The shaft is made of the 

normalized 0.57 per cent carbon steel listed in 

Table 7. The radius of the fillet at section A A is 

^ in. The connecting rod exerts a total pressure 

of 25,000 lb. on the pin. If the pressure is assumed 

to be uniformly distributed, will the pin probably 

fail, due to repeated stress, in a service of ten 

years? If not, what is the ratio of the localized 

stress to the endurance limit? The speed of the 

shaft is 120 r.p.m., the engine runs ten hours per 

day and three hundred days per year. 

Solution.—The crank pin would be subjected to about 200,000,000 com¬ 

plete reversals of bending stress and hence would fail if the unit-stress in the 

pin exceeds the endurance limit of the material. The endurance limit of this 

material, as given in Tab’e 7, is 33,000 lb. per sq. in. 
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The maximum unit-stress in the pin is found as follows: The nominal unit- 

stress as given by the flexure formula is 

Me 25,000X3.125X2.5 

T~ 
= 6360 lb. per sq. in. 

and by making use of Tables 8 and 9 as a guide, the maximum unit-stress at 

the root of the fillet will be estimated to be twice the calculated value. Thus, 

maximum s = 6360X2 = 12,720 lb. per sq. in. 

which is less than the endurance limit. The ratio, /, of the localized stress to 

the endurance limit, then, is 

12,720 _ 1 

33,000“ 2.6’ 

and hence the stress in the crank pin is slightly greater than the permissible 

working stress recommended. 

Problem 237. A piston rod (Fig. 243) is to be subjected to a maximum load, 

P, of 60,000 lb. The engine runs at a speed of 150 r.p.m. and will be assumed 

to be in service six hours per day, 

three hundred days per year for 

at least ten years. The rod is 

made of 0.4 per cent carbon steel 

heat treated to give an endurance 

limit with completely reversed 

bending stress of 46,700 lb. per sq. 

in. (compare with Table 7). The 

rod has sharp corners at B, and 

the diameter of the rod at the 

roots of the threads may be 

assumed to be 0.85 d. What should be the diameter, d, of the rod? 

Solution.—The endurance limit for the material (see Art. 128) is, 

sd = 46,700X0.6 = 28,000 lb. per sq. in. 

If the working unit-stress (sw) is taken as one-third of the endurance limit, 

then, 

28,000 
sw = —-= 9330 lb. per sq. m. 

«f= 

n. In 

A d i*r<7- 
A. ,t *7 

14"rad. u 

111-Li 
Fig. 243. 

Now the average or nominal unit-stress on the cross-section at the roots of the 

thread is 

P 60,000 

Sav*“ a~ir(0.85d)2’ 

and the maximum (localized) unit-stress at the sharp corner, B, or at the root 

of the threads, will be two or three times the average unit-stress. A value of 
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3 will be used since it is likely that the stress would be far from constant over 

the area due to eccentricity of loading even if there were no abrupt changes of 
section. Therefore, 

Hence 

smax. 
a 

9330 = 3 
60,000X4 

7r(0.85d)2 

d = 5.83 in. 

PROBLEMS 

238. The rods which operate the slide valves of engines frequently break- 

One method of construction is shown in Fig. 244. If the threads on the rod 

are U. S. standard threads, estimate a safe working stress for the rod if the 

material is hot-rolled low-carbon steel (about 0.20 per cent carbon, Table 7); 

also find the corresponding working value of the load P if the cross-sectional 
area of the bar is 2 sq. in. 

239. Fatigue failures frequently occur at the corners of cotter holes. If a 

bar having a rectangular cotter hole (Fig. 245) with square corners is subjected 

to repeated direct stress varying from zero to a maximum, and the bar is made 

of 0.40 per cent carbon steel having a tensile ultimate strength of 80,000 lb. 

per sq. in., what working unit-stress should be used in the design of the bar? 

What working axial load, P, should be applied to the bar if the cross-sectional 

area of the bar is 4 sq. in.? 

240. A circular shaft having a constant diameter of 2 in. is to be subjected 

to several million complete reversals of bending stress. The shaft is turned 

with a lathe tool. What is the maximum bending moment that should be 

applied to the shaft, if the shaft is made of about 0.50 carbon steel, hardened 

and tempered (see Table 7). 

241. In Fig. 246 are shown two forms of crank pins. The dimensions l 
and d of the crank pins are equal and the pins are made of the same grade of 
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steel. Compare the maximum repeated pressures the two pins can resist 

without breaking due to repeated complete reversals of bending stress. 

Fig. 246. 

132. Effect of Range of Stress.—The investigations of Wohler 

and the supplementary work of Bauschinger showed that the num¬ 

ber of cycles of stress required to cause rupture depends on the 

range of stress. For example, if the unit-stress in each cycle 

varies from a tensile stress of 30,000 lb. per sq. in. to a compres¬ 

sive stress of 30,000 lb. per sq. in. (a range of stress of 60,000 lb. 

per sq. in.) fewer repetitions are necessary to cause rupture than 

if the unit-stress in each cycle varies from zero to 30,000 lb. per 

sq. in. although the maximum unit-stress is the same for each of 

these ranges of stress. 

Further, the maximum or limiting unit-stress that can be 

repeated an indefinitely large number of times (the endurance 

limit) depends on the lower value of the stress in the cycle of stress 

and hence indirectly on the range of stress in the cycle. A formula 

based mainly on the results of Wohler’s experiments, that expresses 

the relation between the endurance limit of a material and the 

range of stress was developed independently by Goodman 7 and 

by J. B. Johnson,8 and will here be referred to as the Goodman- 

Johnson formula. It may be derived as follows: 

Goodman-Johnson Formula.—In Fig. 247 the minimum unit- 

stresses (smIn.) or lower limits of the various ranges of stress (A5) 

which, in Wohler’s experiments, resulted in failure after the appli¬ 

cation of about 4,000,000 cycles of stress were plotted as ordinates, 

the abscissas being selected arbitrarily so that a straight line 

(.EOC) would connect the ends of the ordinates. It was then 

found that if the corresponding maximum unit-stresses (smax). or 

upper limits of the ranges of stress were plotted as ordinates the 

ends of the ordinates fell approximately on the straight line CAD 

7 Mechanics Applied to Engineering, p. 634. 

8 Johnson’s Material of Construction, 5th Edition, p. 781. 
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(Fig. 247) where OA is equal to one-half of the static ultimate 
strength of the material (§su), and MD and ME are equal to 
one-third of the static ultimate strength (JsM). Thus, for com¬ 

plete reversals of stress the endurance limit was found by Wohler 
to be equal to about Jsw,9 and for a range of stress with the mini- 

Fig. 247.—Goodman-Johnson diagram. Effect of range of stress on endur¬ 

ance limit of steel. 

mum stress equal to zero the endurance limit was equal to about 

Now from Fig. 247 we have, 

ND = DE, BA = OA, KH = HG = As, etc. 
Therefore, 

As = FK—FH, 

And since by definition, As = smax. — smln., equation (237) may also 

be written: 
As = f(s„-smIn.).(238) 

But smax. is the endurance limit corresponding to the range of 

stress As. If then s'r is used to denote the endurance limit, equa¬ 

tion (237) may be written 

s'r = s„—As.(239) 

9 As already noted, the more recent tests show that this value is nearly 

%su, the higher ratio being due probably, in part at least, to more generous 

fillets and better surface finish. 
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It is frequently more useful to have the endurance limit 

expressed in terms of the ratio of the minimum unit-stress to the 

maximum unit-stress () than in terms of the range of stress. 

Thus, equation (237) may be transformed as follows: 

Smax. — As 

Therefore, 

2-q 1-W 

or since smax. is the endurance limit, s'r, for the given ratio, q, of 

minimum to maximum unit-stress we have 

(240) 

which will be called the Goodman-Johnson formula. 

The number of experiments made by Wohler to determine the 

effect of range of stress was not large; recent experiments, as 

already noted, indicate that the Goodman-Johnson formula gives 

results on the side of safety. 

Illinois Empirical Formula.—Since the endurance limits with 

completely reversed cycles of bending stress are now well estab¬ 

lished for a variety of steels, and can be found fairly easily from 

tests for any given steel (see Art. 156 for methods of testing) it is 

desirable to express the endurance limit of the steel for a given 

range of stress in terms of the endurance limit for completely 

reversed cycles of bending stress instead of the ultimate strength 

of the material. 

From a series of tests made in connection with the investiga¬ 

tion of the fatigue of metals at the University of Illinois, F. M. 

Howell found that the following empirical formula10 expresses the 

relation between the endurance limit s'r of the material when sub¬ 

jected to any given maximum and minimum stresses in each cycle 

10 Bulletin 124, Engineering Experiment Station, University of Illinois. 
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of bending stress and the endurance limit sf of a material when sub¬ 

jected to completely reversed bending stress: 

in which q is the algebraic ratio of the minimum stress to the 

maximum stress during a cycle of stress (for completely reversed 

stress q= 1.0). Equations (240) and (241), however, must be 

considered as tentative until more experimental data are available. 

(For a formula based on the energy theory see Bulletin 142, Engi¬ 

neering Experiment Station, Univ. of Illinois.) 

It will be assumed, tentatively, that with cycles of shearing 

stress the effect of range of stress is the same as with cycles of 

bending stress. This assumption seems decidedly on the side of 

safety since the results of the tests 11 now available indicate that, 

with repeated shearing stress, range of stress has considerably 

less effect on the shearing endurance limit than does range of 

stress on the endurance limit with repeated bending stress. 

Caution.—The limiting value of the unit-stress for any steel 

should never be taken greater than the yield-point even if the above 

formulas give a value of the endurance limit larger than the yield 

point. Thus, in the above equations the maximum value of s'r 
to be used is the yield-point of the material. That is, if s'r is 

found from equation (240) or (241) to be greater than the yield- 

point of the material the static strength of the member rather than 

the fatigue strength governs the design of the member. This 

fact should be clearly grasped since the value of s'r, in the above 

equations, for machine members that are subjected to cycles of 

stress in which the stress does not change sign is seldom less than 

the yield-point of the material. 

The Goodman-Johnson formula (or the Launhardt-Weyrauch 

formula which was similar to this) was formerly used extensively 

in designing bridge members. Static strength, however, will 

almost always govern the design of such members and the use of 

repeated stress formulas has practically been abandoned. It was 

frequently assumed that the use of a fatigue formula for bridge 

members was necessary to take account of the effect of impact 

loads. There was little justification, however, for using a fatigue 

11 Bulletin 142, Engineering Experiment Station, University of Illinois. 
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formula for this purpose and now, since allowance is usually made 

for impact loads and certain secondary stresses, the effect of 

fatigue is properly neglected. 

ILLUSTRATIVE PROBLEM 

Problem 242.—The pulley, A, (Fig. 248) exerts a constant twisting moment 

of 4800 lb. in. on the shaft B. The total bending load P due to the tensions 

in the belt on the two sides of che pulley 

is 800 lb. The diameter of the shaft is 2 

in. and is mounted in flexible bearings. 

The shaft is made of cold-rolled steel for 

which the tensile ultimate strength is 

80,000 lb. per sq. in. and the tensile yield- 

point is 40,000 lb. per sq. in. The value 

of the endurance limit of the material is 

assumed to be unknown. Is the shaft well 

designed? 

B 

ir 

" <-12 > 

vp 

ii 
fZ 

Fig. 248. 

Solution.—Static Loading.—The stresses due to the loads, considering the 

loads to be static loads, are as follows: the shearing unit-stress due to the 

twisting moment is (see Art. 26), 

Tc 4800X1 

J ^(2 y 
32 

= 3060 lb. per sq. in. 

The maximum fiber unit-stress at section CC due to the bending moment 

is (see Art.34), 

Me 9600X1 
s = ~r=—-—— = 12,240 lb. per sq. in. 

1 nz)1 

64 

The maximum combined normal unit-stress is (see Art. 109), 

max. s' = *$+| Vs2+4ss2 

= *12,240+*V12,240+4(3060)2 

= 6120+6840 

= 12,960 lb. per sq. in. 

and the minimum normal unit-stress is 

min. s' = *s —*V/s2+4ss2 

= 6120-6840 

= —720 lb. per sq. in. 



ILLUSTRATIVE PROBLEM 321 

As explained in Art. 109 max. s' and min. s' occur at the same point in the 

material, but on planes at right angles to each other. Further, when s is a 

tensile stress max. s' is a tensile stress and min. s' is a compressive stress, and 

when s is a compressive stress, max. s' is a compressive stress, and min. sr 
a tensile stress. 

The maximum combined shearing unit-stress is (see Art. 109). 

s'g = ±|Vs2+4s.2 

= ±6840 lb. per sq. in. 

and this stress occurs at the same point where max. s' and min. s' occur but 

on each of two planes that bisect the angles between the planes on which max. sr 
and min. s' occur. 

Since a tensile and compressive working unit-stress of at least 16,000 lb. 

per sq. in. and a shearing working unit-stress of 10,000 lb. per sq. in could be 

used with static loading the shaft has ample resistance to static loads. 

Repeated Loads.—The number of repetitions of stress would be sufficient 

to cause rupture if the material is stressed above the endurance limit. The 

shaft has no abrupt change of section at the section, CC, of maximum stress 

but it will be assumed that the surface of the shaft is rather rough due to 

scratches caused by grit in the bearing, and it will be assumed that these 

scratches are in vertical planes and hence would cause localized bending stress 

only; the shearing stress, ss, being unaffected. 

Therefore, the value of s as found above must be increased. Thus, 

according to Table 4, 

s = 1.2X12,240 = 14,700 lb. per sq. in. 

if this value of s is used in the above equations the following values for max. s', 

min. s' and s'8 are found 

max. s'= 7350+7950 

= 15,300 lb. per sq. in., 

min. s'= 7350—7950 

= —600 lb. per sq. in. 

s'8= ±7950 lb. per sq. in. 

Now the failure of the shaft due to repeated stress may be due to (a) the com¬ 

pletely reversed bending stress, (5) the completely reversed combined shearing 

stress, and (c) the combined normal stress that is not completely reversed. 

(a) The stress s (14,700 lb. per sq. in.) is a completely reversed bending 

stress. But the endurance limit of the material with completely reversed 

bending stress may be taken as 0.45 of the tensile ultimate strength, and hence: 

the above reversed stress is approximately 0.41 of the endurance limit, since 

W-.O.tt. 
0.45X80,000 
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(6) The stress s'8 (7950 lb. per sq. in.) is a completely reversed shearing 

stress. Now the shearing endurance limit of the material is (see Art. 127). 

(sr)s = srX0.55 = 36,000X0.55 = 19,800 lb. per sq. in. 

Hence the reversed shearing stress is approximately 0.40 of the endurance 

limit since 
7950 

19,800 
0.40. 

(c) The stress s' varies in each cycle from min. s' ( — 600 lb. per sq. in., 

compressive stress) to max. s' (15,300 lb. per sq. in., tensile stress). Now 

for this range of stress the endurance limit of the material is 

1-k 

3 +q 
-sr. (see Art. 132) 

If the first expression is used we have: 

\8 0,000 

1 / — 600 N 

~2\15,300, 

40,000 

1 + 10.039 

40,000 ^ per go, in. 

1.020 

And hence the maximum stress in each cycle is approximately 0.39 of the cal¬ 

culated value of the endurance limit, since 

15,300 

39,200 
= 0.39. 

If the second expression is used we have: 

3+0.039 
0.45-80,000 

= 54,700 lb. per sq. in. 

Hence the maximum stress in each cycle is approximately 0.28 of the cal¬ 

culated value of the endurance limit. 

The critical stress, therefore, is the completely reversed bending stress, 

and its value is somewhat too high unless the uncertainty in the loads is rela¬ 

tively small. 

PROBLEMS 

243. A chrome-nickel heat-treated crank shaft of a single acting gas engine 

is subjected to repeated applications of a torsional shearing stress which varies 

approximately from zero to a maximum (q = 0); bending stresses may be 

neglected. If the shaft is 2 in. in diameter, what maximum torque should be 

allowed? Use values in Table 7. 

244. If in Problem 242 the distance from the action line of P to the sec¬ 

tion CC were 8 in. and the twisting moment were 6000 lb .-in., what stress 

would approach closest to the endurance limit? 
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245. A special chrome-vanadium heat-treated steel having an ultimate 

tensile strength of 200,000 lb. per sq. in. and proportional limit of 150,000 

lb. per sq. in. is used in a helical spring on an automobile truck. The stress 

in the spring is mainly shearing stress (see Art. 90) and varies from a small 

value due to the weight of the truck to a maximum, (q = 0). The maximum 

stress is not constant, however, since the impact loads vary greatly. It may 

be assumed that the spring is subjected frequently to overload stresses. 

Estimate the endurance limit and find a working stress, assuming that the 

working stress should not be greater than one-fourth of the endurance limit. 

Ans. (s'r)s = 74,400 lb. per sq. in.; sw—18,600 lb. per sq. in. 



PART II. MECHANICAL PROPERTIES OF 
STRUCTURAL MATERIALS 

133. Introduction.—The effective use of materials in engineer¬ 

ing structures and machines for resisting loads requires a knowl¬ 

edge of (1) the loads to which the members of the structure or 

machine are to be subjected, (2) the relations between the loads 

and the stresses and deformations caused by the loads; these 

relations involve the dimensions and form of the body or member 

and are discussed in Part I, and (3) the mechanical or physical 

properties of structural materials. 

A knowledge of the properties of materials is needed for two 

purposes: (a) for use in establishing the relations under (2) and in 

the application of those relations to problems of design, and (6) 

for use in selecting materials best suited to the service require¬ 

ments. 

A discussion of the relations under (2) and a very brief discus¬ 

sion of the topics under (3) have been given in Part I. A more 

extended discussion under 3 (b), that is, of the properties needed 

in materials for load-resisting members, as used in various types of 

structures and machines, and of methods of measuring the prop¬ 

erties, is given in the following pages. 
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CHAPTER XV 

DEFINITIONS, METHODS OF MEASURING, AND 

SIGNIFICANCE OF MECHANICAL PROPERTIES 

134. Properties to be Considered.—A knowledge of the follow¬ 

ing properties is of special importance to the engineer in the use of 

materials in load-resisting structures and machines, and they can 

be measured quantitatively with a fair degree of satisfaction by 

means of mechanical tests. 

1. Strength 

(a) Static 

(b) Impact and Energy 

(c) Fatigue 

2. Ductility. 

On the other hand the properties, plasticity, malleability, and 

machineability are of importance mainly to the manufacturer in 

forming (rolling, forging, drawing, pressing, machining, etc.) 

the material for use in structures and machines, and their measure¬ 

ment is less definite than that of the properties mentioned above. 

However, these properties are closely connected with some of 

those mentioned above, as are also the general properties, flex¬ 

ibility and elasticity. 

135. Meaning of Strength.—By strength of a material is 

meant that property which enables the material to resist external 

forces or loads without incurring structural damage. By structural 
damage is meant stress and deformation in the material of a mem¬ 

ber that cause the member to cease to function properly in the 

structure or machine; it has different meanings under different 

conditions of use or service; for example, a stress or a deformation 

that would cause structural damage in the member of a building 

might not cause structural damage in a chain hoist or a coal-car 

frame, and, on the other hand, a deformation that would cause struc¬ 

tural damage in a lathe, planer, or other machine tool would not, 
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3. Stiffness 

4. Resilience 

5. Toughness 

6. Hardness 
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in general, cause damage in aabuilding, etc. Thus, the maximum 
usable strength of a material depends on the service in which the 

material is used, and accordingly it will be found desirable to 

have at least two measures l°f the maximum usable strength, 

namely, the ultimate strength and the elastic strength. However* 

no single quantity can adequately measure either the ultimate 

strength or the elastic strength of a material, for: 

(f) The strength of a material depends on the type of load¬ 

ing (static, impact or energy, and repeated) to be resisted. Thus, 

a cast-iron beam is stronger in resisting static loads than is a sim¬ 

ilar oak beam, whereas the oak beam is stronger than the cast-iron 

beam when the load applied is an impact or energy load (see Chap. 

XIII). Again, a bar of steel may resist a static load of a given 

magnitude without incurring measurable structural damage and 

yet it may rupture when subjected to a load of the same magnitude 

when applied a large number of times (see Chap. XIV). 

2. For any type of loading (static, impact and repeated) the 

strength of a material is different for different kinds of stresses 

(tensile, compressive and shearing) developed in the material. 

Thus the strength of cast iron, concrete, brick, and other brittle 

materials in tension and in shear are much less than their strengths 

in compression, and for some brittle materials including cast iron 

the shearing strength is greater than the tensile strength. Further* 

most ductile materials such as wrought iron, steel, soft brass, etc., 

are much weaker in shear than in tension and in compression. 

The strength of a material may, therefore, be considered in 

accordance with the following outline: 

Strength: 

1. Static; 
| Elastic 

1 Ultimate 

Tensile 

Compressive 

Shearing 

2. Impact and f Elastic 

Energy; j Ultimate 

Tensile 

Compressive 

Shearing 

f Tensile 

3. Fatigue; Ultimate <j Compressive 

[ Shearing 

Energy and fatigue strengths have already been discussed 

briefly in Chapters XIII and XIV, respectively. 
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Static Strength 

136. Static Ultimate Strength.—The resistance that a material 

offers to a static (gradually applied) load, that is, the static strength 

of the material is measured in terms of the unit-stress (internal 

force per unit area) developed in the material. The static ultimate 
strength of a material is the unit-stress developed in the material 

by the maximum static load that the material can resist without 

rupturing. 

Method of Determining Ultimate Strength.—The static ultimate 

strength of a material is determined by testing a specimen of the 

material (or several specimens) in a testing machine (see Fig. 3 

for a common type of machine) which weighs the load applied to 

the specimen; the largest load applied before fracture occurs 

divided by the original area is taken as the measure of the ultimate 

strength. In determining the ultimate strength from a test, 

whether it be the tensile, compressive, or shearing ultimate 

strength, care must be exercised, particularly with brittle mate¬ 

rials, in securing an axial load (Art. 3), that is, a load which causes 

a uniformly distributed stress on the cross-sectional area of the 

test specimen, since the value of s, as found from the equation 

P 
s = —, 

a 

is the average unit-stress and not the maximum unit-stress devel¬ 

oped in the specimen if the maximum load P does not cause the 

stress to be distributed uniformly on the cross-sectional area. 

Experience has shown that the ordinary spherical-seated grips 

(see Fig. 249a) used on testing machines for tension and compres¬ 

sion tests do not insure that the load shall be axial; for ductile1 
materials, however, the eccentricity introduced by such grips will 

not seriously affect the value of the ultimate strength. But, for 

brittle materials such as cast iron, cast aluminum alloys, etc., the 

eccentriticy may lower the value of the ultimate strength appre¬ 

ciably. In testing cast aluminum alloys it has been found2 

1 The property of ductility is discussed in Art. 141, but for use in this 

article it will be sufficient to define ductility as that property which enables 

the materials to draw out or become plastic under load; brittleness is the lack 

of ductility. 
2 Report on the Materials of Construction used in Aircraft and Aircraft 

Engines, Aircraft Production Department of the Ministry of Munitions, 

British Government. 
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that unless special loading devices (see Fig. 249e) are used the 

ultimate strength obtained is frequently 30 per cent too low and 

that the low values are obtained consistently if a definite routine 

is followed in putting the specimens in the grips. 

Other tests 3 have shown that, even with approved methods of 

holding the specimen, the maximum unit-stress along an element 

or fiber of the specimen may be 10 per cent or more in excess of 

the mean unit-stress over the cross-sections. 

Form of Test Specimen.—The form of the test specimen also 

has an influence on the distribution of stress on the cross-section 

within the gage length. For relatively ductile materials the form 

of grips and of specimens shown in Fig. 249(c) and (d) give satis¬ 

factory results. In a long tension specimen the unevenness of 

stress caused by the gripping device has a better opportunity to 

become nearly uniform on the cross-section within the gage length 

than in a short specimen. ■ Therefore, spherical seated bearing 

blocks (Fig. 249a and b) are used, as a rule, only on short 

specimens. Short tension specimens are either threaded (Fig. 

249a) or have shoulders on the ends (Fig. 2496); the latter 

method is used particularly with specimens that are to be tested 

in a hardened condition after being heat treated. The loading 

device shown in Fig. 249(e) is used in testing very brittle material. 

(For compression and shearing test specimens see Art. 139 and 

140.) The significance of the ultimate strength of a material to 

the engineer is discussed in Art. 138. Values of ultimate strengths 

for various materials are given in the tables of Chapter XVI. 

137. Static Elastic Strength.—In many structures and 

machines structural damage to the material occurs at stresses 

much below the ultimate strength of the material, that is, the 

maximum usable strength of the material is not, as a rule, best 

measured by the ultimate strength. There is need, therefore, for 

a measure of the unit-stress at which structural damage begins 

or at which only a small amount of structural damage has occurred. 

The static elastic strength of a material is the maximum unit- 

3“On the Stress Distribution During Tension Test,” Engineering (Lon.) 

Dec. 10, 1907, p. 796; Oct. 29, 1909, p. -593. For tension tests of specimens 

held in spherical-sea ted holders the ratio of maximum stress to mean stress 

averaged 1.165; for compressive tests of specimens with spherical seated 

bearing blocks the ratio averaged 1.059; for both series of tests the average 

was 1.101. 
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_To Fit Gripping__ 
Device on Testing ^ 

Machine 

Test Specimen 

(e) 

Drive Fit 

Steel 
Ball 

Hardened 
Steel Plug 

/Machined at 
the Same 
Setting 

Fig. 249.—Methods of testing material in tension. 
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stress that can be developed in the material without causing appre¬ 

ciable structural damage. The criterion for structural damage is 

somewhat indefinite, but, in general, structural damage, when 

caused by static loading,4 is closely associated with plastic action 

in the material, and the unit-stress at which plastic action is con¬ 

sidered to begin or to have reached a measureable amount is 

usually taken as the measure of the static elastic strength of the 

material. In an actual test of a material (whether in tension, in 

compression or in shear) the determination of the unit-stress at 

which plastic action begins is subject to uncertainties, and hence 

a number of limiting stresses have been proposed and used as 

measures of the static elastic strength of a material; the various 

limiting stresses differing mainly by the amount of plastic action 

that is considered to be most significant or most convenient to 

measure. 

The following measures of the static elastic strength of a 

material are discussed below: proportional limit, yield point, 

elastic limit, Johnson’s apparent elastic limit, A.S.T.M. elastic 

limit, and proof stress. Further, although it is assumed, for con¬ 

venience, that the material is tested in tension, the discussion will 

also apply to a compression and a shearing test. Values of the 

static elastic strengths of various materials are given in the tables 

of Chapter XV. 

(a) Proportional Limit.—If a bar of mild steel is subjected to a 

gradually increasing axial load P (Fig. 250a), the unit-stress 
p e 

s, equal to —, and the unit-elongation (unit-strain) e, equal to 

will increase so that the unit-stress is proportional (within closely 

approximate limits) to the unit-strain (Fig. 2506), until a unit- 

stress called the proportional limit (sometimes called proportional 

elastic limit) is developed in the material: the proportional limit 

is represented by A'A in Fig. 250(6) and' (c). The curve of Fig. 

250(6) is called a stress-strain diagram and is obtained by plotting 

the unit-stresses and corresponding unit-strains as found from the 

test data. The unit-strains that occur before the proportional 

limit is reached, represented by the abscissa to the first part of 

the stress-strain curve in Fig. 250(6), are plotted to a larger scale 

4 Material may rupture when subjected to repeated loads without giving 

any evidence of plastic action, as is discussed in Chapter XIV and also in Art. 

155. 
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in Fig. 250(c) in order better to determine the modulus of elas¬ 

ticity (or the slope of the curve OA) and the proportional limit 

(or the point of tangency of OA and ABC), and also to bring out 

more clearly the form of the part ABC of the curve, since the strains 

corresponding to this part of the curve are closely connected with 

the beginning of structural damage. 

The proportional limit of a material, then, is the greatest unit- 

stress to which the material may be subjected without causing the 

unit-strain to increase at a faster rate than does the unit-stress. 

Fig. 250.—Stress-strain diagram of ductile steel; (6) the complete diagram, 

(c) the first part of diagram using a large scale for unit-elongations. 

The questions that now arise may be stated as follows: Is the 

proportional limit of a material, as determined from test data, 

the unit-stress at which plastic action (structural damage) begins? 

Is it a reliable measure of the maximum usable stress for material 

as used in structures and machines? In order to answer these ques¬ 

tions the conditions or factors in the test which influence the value 

of the proportional limit must be investigated; and further, the 

extent to which these conditions influence the usefulness of the 

material in the structure or machine must be considered. 

Several of these influencing factors are discussed as follows: 

1. The proportional limit may be lowered appreciably by 

unevenness of stress in the fibers of the test specimen: 

(a) Unevenness of stress may be due to eccentricity of loading 

caused by the gripping devices, etc. For example, in Fig. 251 are 
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shown the tension stress-strain curves obtained by plotting the 

strains measured on three independent gage lines (120° apart) 

against the corresponding average unit-stresses on the cross- 

section of the specimen, when the out-of-alignment of the jaws of 

the machine (the eccentricity of loading) was 0.035 in. These 

curves indicate the great unevenness of deformation (and hence of 

stress) due to eccentricity of loading. Such unevenness of stress 

tends to lower the proportional limit and to produce a long bend 

for the portion AB (Fig. 250c) in the stress-strain curve indicating 

Fig. 251.—Stress-strain diagrams showing unevenness of stress in specimen 
held in wedge grips when one pair of grips was 0.035 in. out-of-line. 

plastic action over a wide range of stress. The curve found by 

plotting the average of the strain readings on the three-gage lines 

is also shown in Fig. 251; this curve gives but little evidence of the 
uneven stretching of the specimen, and hence with the usual exten- 

someter, which averages the deformations on two or more gage 

lines, eccentricity of loading will not necessarily be detected by 
noticeable irregularities in the stress-strain diagram. 

(6) Unevenness of stress may be due to initial internal stresses 

caused by hardening steel, bronze, etc., by heat treatment or 

by cold working as in cold drawing and rolling. The stress-strain 

diagram for steel containing initial stresses is usually of the form 

shown in Fig. 252(a), and after the stresses are released by heating 

the steel mildly and cooling relatively slowly (tempering) the curve 

takes the form shown in Fig. 252(5); the increase in the propor¬ 

tional limit being large; in some cases much the same effect can 
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be produced by subjecting the steel to several thousand repe¬ 
titions of low stress. 

2. The more sensitive the extensometer is, the lower on the 
curve will the proportional limit or point of tangency, A (Fig. 
250c), be detected, other conditions being the same. Thus, in 
one series of tests 5 the results given in Table 10 were obtained, 
three specimens being taken from each of three different bars of 
soft steel of supposedly the same quality. 

TABLE 10 

Smallest Unit-deformation 

Indicated by Extensometer 

Specimen 

from Bar 

No. 

Proportional 

Limit. 

Lb. per sq. in. 

Average Value for 

the Three Speci¬ 

mens in Each Group 

0.000,000,27.I 

1 38,260 >| 

2 32,670 32,700 

l 3 27,160 J 

f 1 40,460 > 

0.000,000,5. 2 35,250 34,480 

1 3 27,740 J 

r 1 41,320 > 

0.000,012,5. 2 34,590 38,180 

1 3 38,620 J 

Thus, the average of the proportional limits of the specimens 
on which the most sensitive extensometer was used is 5480 lb. 
per sq. in. lower than that of the specimens on which the least 
sensitive (but commonly used) extensometer was employed. 

3. The value of the proportional limit of metals is also affected 
by the crystalline structure of the material. For example, metal 
having large or coarse grains due to slow cooling from a high 
temperature (as in the case of steel and brass castings, etc., or of 
rolled and forged steel on which the rolling or forging has been 
stopped at a temperature considerably above the critical tempera¬ 
ture) has a relatively low proportional limit since the stress-strain 
diagram is curved over a considerable distance along the curve as 

5 “ The Physical Significance of the Elastic Limit,” by H. F. Moore. Proc. 

Inter. Assoc, for Testing Materials, Vol. XXVIII. 
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indicated in Fig. 252(a), and any treatment which will refine the 
grain (such as heat treatment, or mechanical working of the metal 
while it is cooling to the critical temperature) may materially 
increase the proportional limit, as is shown in Fig. 253. 

4. The stress-strain diagrams for some brittle materials such 
as cast iron, concrete, etc., are curved practically from the start, 
similar to that shown in Fig. 252(a) (see Fig. 261), and hence the 
proportional limit for these materials is practically zero. 

5. When the stress-strain curve bends away from the straight 
line very gradually as in Fig. 252(a) and 253(a) the determination 

Fig. 252.—Effect of internal stress due to hardening by heat treatment on 

proportional limit of steel. 

of the point of tangency of the curve and the straight line (pro¬ 
portional limit) is subject to considerable variation and is also 
dependent upon the scales used in plotting the stresses and strains. 

Summary.—The value of the proportional limit of a material 
as found from a test is influenced (a) by local yielding of the speci¬ 
men (localized strains) due to a slight eccentricity of load, initial 
stresses, etc., particularly when determined with an extensometer 
that will detect very small deformations: (b) by the crystalline 
or internal structure of the material due to methods of cooling 
and of mechanical working, the value of the proportional limit 
for some coarse-grained brittle materials being practically zero. 

Is the Proportional Limit a Reliable Measure of the Maximum 

Usable Stressf The question now arises as to whether it is desirable 
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to have a measure of the maximum usable stress that is influenced 
by the factors discussed above. It is undoubtedly true that the 
material in a member of a structure or machine is seldom if ever 
free from localized stresses and strains sufficient to cause local 
yieldings when the member is subjected to its working or design 
loads, these local yieldings, however, do not as a rule cause struc¬ 
tural damage to the member as a whole provided that the material 
has sufficient ductility to permit the local yielding to occur and 

Fig. 253.—Stress-strain diagrams of steel casting and rolled steel showing 

the effect of the hot-working, (a) Specimen from steel casting that 

cooled slowly after being poured. (6) Specimen of same chemical com¬ 

position as (a), steel rolled while cooling. 

thereby relieve the material of the high localized stresses. Hence, 
the maximum usable strength of a ductile material is likely to be 
greater than the proportional limit. Further, brittle material 
such as cast iron and concrete can be used safely when subjected 
to stresses above their proportional limits. 

It appears, therefore, that the proportional limit may be 
regarded as a reliable measure of the maximum usable strength 
of a ductile material provided that it is found from a specimen 
having a minimum of initial stress and that the specimen is tested 
with a minimum of eccentricity of loading so that the first yielding 
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is also a rather general yielding of the whole specimen, as indicated 

by an abrupt type of stress-strain curve. 

Much of the hot-rolled and forged structural steel (and other 

hot worked ductile metals) which has been finished close to the 

critical temperature is fairly free from internal stresses and is fine 

grained; and, if tested with standard gripping devices (see Fig. 

249) and strain-measuring apparatus, the proportional limit is a 

fairly satisfactory measure of the beginning of real structural 

damage of such material. However, if the rolling has been 

stopped at too high a temperature as sometimes occurs with heavy 

rolled sections, plates, etc., the crystalline structure will be coarse 

and the stress-strain curve will be of the gradual type as shown in 

Fig. 252(a) and 253(a) instead of the abrupt type shown in Fig. 

252(5) and 253(6). Or, if the rolling has been finished at too low 

a temperature as is likely to occur with the thinner rolled-sections 

and with plates, initial stresses may be set up in the material, due 

to the cold working, which may cause the proportional limit to be 

less than the stress that would cause structural damage in the 

structure or machine in which the material is used. Further, 

for most hard steels and other brittle materials in general, the pro¬ 

portional limit is not a satisfactory measure of the static elastic 

strength. And, in any case, the uncertainties as to the real value 

of the proportional limit make desirable the measurement of the 

elastic strength by means of a unit-stress at which there occurs a 

small but measurable plastic deformation which is an indication of 

incipient general yielding of the specimen rather than by the pro¬ 

portional limit which is likely to be an indication of the beginning 

of local yielding that may not be indicative of structural damage 

under service conditions. Thus, the yield-point, Johnson’s 

Apparent Elastic Limit, etc., will now be considered as measures 

of the maximum usable strength of a material. 

(6) Yield-point.—The yield-point of a material is the unit- 

stress at which the material yields appreciably without an increase 

of load. In Fig. 250 the yield-point is represented by the ordinate 

to the horizontal line BC. Only ductile materials have yield- 

points. It is evident that structural damage to most structural 

and machine members has occurred when the primary stresses 

in the member reach the yield-point of the material, since the 

member will be permanently distorted. 

At stresses below the proportional limit the deformation is 
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practically all elastic, whereas at the yield-point the deformation 

is mainly plastic yielding. At stresses between the proportional 

limit and the yield-point (between points A and B, Fig. 250c) 

the deformation is partly elastic and partly plastic. If the change 

from elastic to plastic deformation is very gradual the ratio of the 

yield point to the proportional limit is large. This ratio is some¬ 

times used as a measure of the amount of internal stress in the 

material and hence as a measure of the degree of success in carding 

out various heat treatments of steel, since the proportional limit 

of a ductile steel free from internal stress and tested under an axial 

load is practically the same as the yield-point. 

Methods of Determining the Yield-jpoint.—The yield-point is 

usually determined in commercial testing by reading the load 

indicated by the poise on the beam of the testing machine (see 

Fig. 3) when the beam drops and remains down for some time as 

the specimen continues to stretch, thus indicating appreciable 

stretch without increase of load. It may also be found by use of 

dividers; the dividers are set to span a relatively short gage 

length on the specimen and are held on the specimen, and the 

least load that causes the gage length to become greater than the 

span of the dividers is noted and taken to be the yield-point load. 

The value of the yield-point is affected less than is the propor¬ 

tional limit by the conditions discussed under (a) above, but when 

determined by the “ drop of the beam ” the value may be raised 

from 3000 to 5000 lb. per sq. in., by the manipulation oi the oper¬ 

ator, by moving out the poise rapidly just as the yield-point is 

approached and thus taking advantage of the inertia of the beam. 

For a discussion of the determination of the so-called yield-point 

for non-ductile materials, see Art. 137(/). 

Is the Yield-point a Reliable Measure of the Maximum Usable 

Stressf The question now arises as to whether the yield-point, if 

carefully determined, is a reliable measure or criterion of the 

static elastic strength of a material to be used in structures and 

machines. The material in some structures and machines is not 

damaged if the stress developed is greater than the yield-point but 

for most structural uses the primary stresses in the members must 

be kept below the yield-point if the members are to perform their 

function in the structure. In such service and for ductile material 

the yield-point may be regarded, as the maximum usable strength 

of the material. 
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The yield-point, therefore, is a reliable measure of the minimum 

stress at which real structural damage becomes evident and hence 

of the maximum usable stress provided: (1) that the material is 

ductile enough to possess a real yield-point, (2) that it is care¬ 

fully determined, and (3) that the material is in such a condition 

(free from internal stress, etc.) that the change from elastic to 

plastic deformation is rather abrupt (Fig. 2536) instead of grad¬ 

ual (Fig. 253a). 

If a material is ductile, is free from internal stresses (such as 

most rolled and forged low carbon steel), and is loaded axially 

when tested, the proportional limit and the yield-point are prac¬ 

tically the same value, and either one is a satisfactory measure of 

the static elastic strength; whereas, for metals that have been so 

treated as to produce a coarse-grained structure or to produce 

internal stresses (as in hardening by heat treatment or in cold 

working) there may be a wide difference between the values of the 

proportional limit and yield-point, and under such conditions 

neither the proportional limit nor the yield-point is as reliable a 

measure of the maximum usable strength of the material as is 

frequently desired. Further, neither of them is a satisfactory 

measure of the elastic strength of most brittle materials. Hencef 

there is need of a method of determining a stress between the pro¬ 

portional limit and the yield-point at which the deformation is 

partly elastic and partly plastic, with sufficient plastic action to 

be readily measurable but sufficient only to indicate incipient 

general yielding of the material. Several such measures of the 

elastic strength are discussed under (d), (e), and (/) below; before 

discussing these, however, the elastic limit of a material will be 

considered. 

(c) Elastic Limit.—Permanent deformation or set is funda¬ 

mentally the best evidence of plastic action or of the breakdown of 

elastic action in the material. The maximum unit-stress that can 

be developed in the material without causing a permanent set is 

called the elastic limit of the material. It may be found by apply¬ 

ing a small load to the specimen and then releasing the load and 

noting whetherThe extensometer reading returns to zero; if there 

is no permanent set a larger load can be applied and so on, until a 

slight permanent set is indicated by the extensometer. If still larger 

loads are applied and then released, the sets will be found to increase 

similar to that indicated by the stress-set curve in Fig. 254(a). 
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The value of the elastic limit as found from tests is affected 

by the same conditions (eccentricity of load, sensitiveness of exten- 

someter, initial stresses, etc.) as is the value of the proportional 

limit, and permanent sets may frequently be detected at low 

stresses particularly with sensitive extensometers but such sets, 

due largely to initial and localized stresses, although present in 

the members of many structures and machines, do not seriously 

affect the strength of the member as a whole, provided that the 

material is relatively ductile. And hence such preliminary sets 

Eig. 254.—Methods of determining Fig. 255. — Tensile stress-strain 

the maximum usable strength of a diagram for rubber; maximum 

ductile material. unit-stress in cycle about 0.70 of 

ultimate strength. 

are, as a rule, not a reliable measure of structural damage when the 

member is subjected to static loads. 

For ductile metals the value of the proportional limit and 

elastic limit as found from tests are practically equal. There is, 

however, no fundamental relation between the proportional limit 

and the elastic limit of a material. In other words, there is noth¬ 

ing in the property of elasticity which requires that unit-stress 

shall be proportional to unit-strain; a material that has a curved 

stress-strain diagram might retrace that curve on release of the 

stress and hence have perfect elasticity. In fact, the stress-strain 

curve for rubber is a reversed curve (Fig. 255) and on release of the 

load (if the load is not too large) the material shows no permanent 

deformation although the curve obtained during release of load 

is not coincident with the curve obtained during application of 

load, that is, there is a hysteresis loop. 
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However, although there is no fundamental relation between 

the proportional limit and the elastic limit, tests indicate that for 

all wrought structural metals and for practically all structural 

materials a deviation from a straight stress-strain diagram is 

accompanied by plastic deformation or set. For most structural 

materials, therefore, the proportional limit serves the same pur¬ 

pose as does the elastic limit and is much easier to determine. 

(id) Johnson’s Apparent Elastic Limit.—In order to avoid the 

objections to both the proportional limit and the yield-point, as 

discussed under (a) and (6) above, J. B. Johnson6 used a unit- 

stress called the apparent elastic limit which is the unit-stress at 

which the deformation increases, with respect to stress, at a rate 

50 per cent greater than that at zero (or small) stress. It is found 

by drawing a line OD (Fig. 254) on the stress-strain diagram 

which has a slope 50 per cent greater than that of the straight 

part of the curve below the proportional limit, and then drawing 

a line D'C' parallel to OD and tangent to the stress-strain curve; 

the ordinate to the point of tangency is the unit-stress at which 

the deformation is increasing, with respect to stress, 50 per cent 

greater than at any stress below the proportional limit. 

The value of 50 per cent increase in slope is arbitrarily selected, 

the purpose being merely to select, by a convenient method, a unit- 

stress at which a small but measurable deviation from the straight 

stress-strain line which is indicative of the beginning of a general 

plastic yielding of the specimen. 

A unit-stress selected by the same method but by using a value 

of 100 per cent increase in slope, instead of 50 per cent increase 

has been called the useful limit point. 

The method of determining Johnson’s apparent elastic limit is 

applicable to nearly all forms of stress-strain curves obtained from 

structural materials and the value obtained is probably the best 

single measure of the maximum usable stress (static elastic strength) 

of a structural material. 

(e) A.S.T.M. Elastic Limit.—As stated under (6) above, the 

yield-point is usually a satisfactory measure of the elastic strength 

of a ductile material, provided that reasonable care is taken in 

securing an axial load in testing, and that the material is reasonably 

free from internal stresses, etc., so that the yield-point is sharply 

defined. Many materials, such as heat-treated or cold-rolled 

6 Johnson’s Materials of Construction, 5th Edition. 
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medium-carbon and alloy steels used for axles, etc., however? 

do not have a sharply defined yield-point, and for such materials 

a measure of static elastic strength is found, particularly in com¬ 

mercial tests which determine acceptance or rejection of the 

material, by the method prescribed in some of the specifications 

of the American Society for Testing Materials, described as 

follows: “ The elastic limit called for by these specifications (for 

heat treated axles and shafts, cold-rolled axles, etc.) shall be deter¬ 

mined by an extensometer reading to 0.0002 in. The exten- 

someter shall be attached to the specimen at the gage marks and 

not to the shoulders of the specimen nor at any part of the testing 

machine. When the specimen is in place and the extensometer 

attached the testing machine shall be operated so as to increase 

the load on the specimen at a uniform rate. The observer shall 

watch the elongation of the specimen as shown by the extensometer 

and shall note, for this determination, the load at which the rate 

of elongation shows a sudden increase.” 

The stress found by this method, as a rule, will be represented 

by a point on the stress-strain curve somewhat above Johnson’s 

apparent elastic limit and hence should be considered perhaps 

as an accurate and conveniently made determination of the yield- 

point; it has decided advantages over the method of determining 

the yield-point by the “ drop of the beam ” or by dividers par¬ 

ticularly for the class of material that exhibits a gradual increase 

in plastic yielding. However, for high-carbon steel, cast iron, and 

other metals of a like degree of brittleness, the “ sudden increase ” 

referred to above is not well marked, and for such material this 

determination tends to yield unsatisfactory results. 

(/) Proof Stress.—As has already been stated the yield-point 

is defined to be the unit-stress at which deformation occurs without 

increase of load and that one of the methods of determining the 

yield point is to obtain the load (and hence the unit-stress) at 

which a distinctly visible increase occurs in the distance between 

gage points on the test specimen as observed by using dividers. 

Now such a visible increase in deformation may be observed in 

material which, according to the definition has no yield-point, 

that is, the deformation observed is elastic deformation; this is 

particularly true in testing high-strength steel, when using a rel¬ 

atively long gage length (4 in. or over). Such a use of the yield- 

point is considered objectionable since the maximum usable stress 
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may be greater than the value found in this way. Hence a stress 
called the proof stress has been proposed and adopted, in British 

specifications, for certain classes of ma¬ 
terial as a substitute for the yield-point. 
The proof stress is a unit-stress applied 
for a short time (fifteen seconds, say) 
which must not produce a permanent 
set of more than a specified amount (§ 
per cent, say) when the stress is re¬ 
moved; that is, a permanent set less 
than the specified amount is not con¬ 
sidered to be evidence of structural 
damage. Thus, in Fig. 256 the proof 
stress for the material is represented by 
the ordinate to the point P on the stress- 
strain diagram. 

QUESTIONS 

1. Does any single quantity measure adequately either the elastic strength 

or the ultimate strength of a material? If not, why? 

2. What is meant by “ structural damage ”? 

3. What do static elastic strength and maximum usable stress mean? 

4. Name several measures of the static elastic strength of a material. 

5. State and discuss several conditions which affect the value of the 

proportional limit as found from a test. 

6. Should a measure of static elastic strength be influenced by the above 

conditions? 

7. State several causes of unevenness of stress in a tension test specimen. 

8. How does unevenness of stress affect the form of the stress-strain dia¬ 
gram? 

9. Under what conditions is the proportional limit a reliable measure of 

the static elastic strength of a material? 

10. Define yield-point of a material. 

11. Of what use is the ratio of the proportional limit to the yield-point? 

12. What advantages has the yield-point as a measure of static elastic 

strength over the proportional limit? Under what conditions are the values of 

the proportional limit and yield-point approximately equal? 
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13. What kinds of material have no yield-point? 

14. Define elastic limit. Is there any fundamental relation between 

the elastic limit and proportional limit of a material? Is there any relation 

as found from experiment? If so, what relation? 

15. Define Johnson’s apparent elastic limit. 

16. What are the advantages of Johnson’s elastic limit as a measure of 

elastic static strength of a material? 

17. Define the A.S.T.M. elastic limit. For what class of materials is it 

specified? Why? 

18. What is the proof stress? Why has it been used in preference to the 

yield-point? 

138. The Significance of the Ultimate and Elastic Strengths.— 

The material in some structural and machine members are fre¬ 

quently subjected to stresses greater than those proposed above as 

measures of the elastic strength of the material as, for example, 

freight-car frames, hoisting cables, ball bearings, etc.; the plastic 

flow of the material which accompanies these stresses do not 

necessarily destroy the usefulness of these members although 

the “ life ” of the members may be reduced because of such use. On 

the other hand, the distortion of the members in many (most) 

structures when stressed, as a whole, above the elastic strength 

of the material will destroy the usefulness of the structure or 

machine; this is true of permanent buildings, bridges, railroad 

rails, machine frames, etc. 

If, then, members in their normal service are to be subjected to 

stresses above the elastic strength of the material the ultimate 

strength may be the maximum usable strength of the material. 

Further, in the case of brittle materials, which have no well-defined 

elastic strength, the ultimate strength is usually a fairly satis¬ 

factory measure of the maximum usable strength of the material 

regardless of the use of the material in the structure or machine, 

since for such material the deformation accompanying any stress 

below the ultimate strength is mainly elastic and hence the ulti¬ 

mate strength is also the elastic strength. 

However, for members in most structures and machines the 

elastic strength of the material is the maximum usable stress for 

the material. And, in all cases, the working stress is considerable 

less than the maximum usable strength, the value of the working 
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stress depending on the conditions and uncertainties discussed 

in Art. 7. 
But even though the elastic strength of a material is the max¬ 

imum usable strength, there are two very important reasons why 
the value of the ultimate strength of material used in force-resist¬ 
ing members should be known: 

(1) In order to give a measure of the reserve strength of the 
member, which it brought into play in resisting abnormally large 
overloads due to accident and unforeseen conditions, as for exam¬ 
ple, a derailment on a bridge, an excessive settlement of a founda¬ 
tion of a building or bridge, a tornado, the running of a testing 
machine after the specimen has been removed and until the 
moving head comes in contact with the weighing table, etc. In 
such cases, although the structure or machine may have its use¬ 
fulness temporarily destroyed, nevertheless, if the material has a 
large reserve strength (a large insurance factor against total col¬ 
lapse) much less damage may be done, particularly where loss of 
life is involved, than if the reserve strength is lacking and hence 
allowing collapse or rupture to occur. (This topic is discussed 
also in Art. 143 and 148.) 

(2) But, even if the loads on a member do not cause stresses, in 
the member as a whole, that are greater than the elastic strength 
of the material, there may be localized stresses at various points 
in the member that are considerably above the yield-point of the 
material; high localized stresses frequently occur at sudden changes 
of sections such as at the roots of threads, at the edges of the 
holes in the plates of a riveted joint, etc.; they are also caused 
by straining the members during erection in order to make them 
line up, or by heat treatment or cold working, etc. And, although 
only a small part of the total volume of the member may be over¬ 
stressed, still if the material of this small volume does not have a 
considerable reserve strength it will rupture and may be the initial 
cause of the rupture of the whole member. In fact stresses (both 
local and general) greater than the elastic strength of the mate¬ 
rial are by no means uncommon in many types of structures that 
are supposedly subjected to relatively low working stresses. The 
spalling off of paint frequently noticed on steel members in build¬ 
ings and other structures indicates the great need of “ reserve 
strength,” and at the same time suggests that in some classes of 
work the reserve strength of the material is too frequently and too 
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confidently relied on to resist secondary stresses not taken into 
account in proportioning and erecting the structure or machine. 

Summary: The ultimate strength is of value in selecting suit¬ 
able working stresses for brittle material such as cast iron, concrete, 
rope, canvas, hard drawn copper, etc., since for such materials the 
ultimate strength, if determined carefully (see Art. 136), is prob¬ 
ably the best measure of the maximum usable stress. In struc¬ 
tures made of ductile material, however, the elastic strength must, 
as a rule, be considered to be the maximum usable strength of the 
material. But, even though the working stress as well as the 
selection of the material is based largely on the elastic strength, 
the ultimate strength, particularly in its relation to the elastic 
strength, is of great importance as a measure of the reserve strength 

of the material; that is, the strength which becomes available in 
resisting unforeseen overloads, excessive localized and secondary 
stresses, etc., thereby adding an insurance factor against total 
rupture or collapse of the structure or machine. The ratio of the 
elastic strength to the ultimate strength is frequently called the 
elastic ratio; in specifications for structural steel this ratio usually 
is required to be at least one-half, the elastic strength being meas¬ 
ured by the yield-point. 

Further, test results show that a value of approximately one- 
half of the ultimate static strength is a fairly satisfactory measure 
of the fatigue strength of wrought ferrous materials when the 
repeated stress is completely reversed, that is, when the stress 
varies from a tensile to an equal compressive stress (see Art. 155 for 
further discussion). 

QUESTIONS 

19. For what kind of a material and under what conditions may the ulti¬ 

mate strength be regarded as the maximum usable strength of a material? 

20. What is meant by reserve strength of a material? Why is reserve 

strength of importance even when the material is used in a structure that 

would be damaged by stressing the material above the elastic strength. 

Define elastic ratio. 

139. Static Compressive Strength.—Although the preceding 

discussion has referred mainly to the tensile strength of materials, 
the statements also apply with few exceptions to the compressive 
strength of the materials. There are, however, additional facts 
that should be considered in connection with compressive strength. 
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For most structural compression members (columns) made of 

ductile material the yield-point must be regarded as the ultimate 

strength of the material since the plastic yielding accompanying 

the yield-point allows the member to bend, after which rupture 

or collapse may soon follow (see Art. 92). Now, if a structure 

which contains both tension and compression members such as a 

building, bridge, crane, etc., and which is made of ductile material 

(structural steel, etc.), for which the ultimate strength in tension 

and compression are approximately the same, is to be designed, 

and if the same working stress is used for compression members as 

is used for tension members, the resistance of the tension members 

to total collapse will be greater than that of the compression mem¬ 

bers. In other words, the reserve strengths of the tension7 

members will be greater than that of the compression members, 

and since the reserve strength of the whole structure is likely to 

be that of the compression members it is evident that, if the reserve 

strength of the structure is of real importance (as it is in most struc¬ 

tures), the working stresses for the compression members should 

be lower than for the tension members. This principle is recog¬ 

nized in city building ordinances and other building specifications 

by specifying lower 8 working stresses for compression members 

than for tension and flexural members. 

Further, the small local yieldings, which lower the proportional 

limit (see Art. 137a) but which in a tension member may not be 

indicative of structural damage may be the beginning of real 

structural damage in a column, since local yielding is likely to be 

followed by bending of the whole column, and hence for columns 

the measure of the elastic strength of the material needs more 

careful consideration than for members used in tension or flexure; 

the conditions (amount of rolling of metals, of moisture in timber, 

of internal stresses in metals, etc.), which affect the elastic strength 

should be considered in determining working stresses. 

Form of Test Specimen.—In determining the compressive 

7 The reserve strength of large built-up tension members is not as large in 

comparison with compression members as might be expected from the results 

of small test specimens, due to the unevenness of stress in the component parts 

of the built-up member. Further, the tensile strength of full-sized solid mem¬ 

bers may be only about 0.85 of the tensile strength of test specimens. (See 

Trans Am. Soc. Civ. Eng., Vol. 61, p. 191; also Eng. News, July 5, 1906.) 

8 See footnote 17 of Chap. XI. 



STATIC SHEARING STRENGTH 347 

strength of a material the specimen should not be long enough to 

allow it to bend, and yet it should be long enough so that the 

unevenness of the pressure on the ends of the specimens will not 

cause noticeable unevenness of stress on cross-sections in the 

central portions of the specimen, that is, in the gage length. A 

cylindrical specimen having a length two to four times its diam¬ 

eter is satisfactory, provided the ends are machined smooth in the 

case of metals or imbedded in plaster of paris if the specimen is 

concrete, stone, etc. Thus, a cast-iron or steel cylinder 1 in. by 

3 in., and a concrete cylinder 6 in. by 12 in. are in common use. 

140. Static Shearing Strength.—The shearing ultimate strength 

of a material may be found by testing the material in direct shear 

in various ways as indicated in Fig. 257. The shearing elastic 

strength (proportional limit, Johnson’s apparent elastic limit, 

yield-point, etc.) is not found from a direct shearing test because 

of the difficulty of measuring the deformation. The shearing 

elastic strength is found from a torsion test of a cylindrical speci¬ 

men (for one type of a torsion testing machine see Fig. 258). The 

stresses on each cross-section of the specimen are shearing stresses 

and the maximum stress may be calculated from the twisting 

moment which is applied and measured by the machine (Fig. 258), 

and the shearing unit-strain may be calculated from the value of 

the angle of twist; the angle of twist, 0, for a gage length, l, being 

measured by the scale and pointer attached to the specimen as 

indicated in Fig. 258. Therefore, a shearing stress-strain diagram 

may be plotted. 

Thus if a gradually increasing twisting moment, T, is applied 

to a solid cylindrical bar of ductile material, such as structural 

steel, the stress-strain curve will be as shown in Fig. 259; the 

shearing unit-stress, ss, and the shearing unit-strain, es, as shown 

in Art. 26 and 28, are found from the equations 

Tc , cd 
Ss = -j and es = y. 

From this curve the approximate values 9 of the shearing pro¬ 

portional limit (P, Fig. 259), Johnson’s apparent elastic limit 

(E, Fig. 259), yield-point (F, Fig. 259), etc., may be found by the 

same methods as were discussed in Art. 137 in connection with a 

tension test. However, in a torsion test it is usually more con- 

9 See below for reasons why these values are approximate. 



348 DEFINITIONS, MEASURING, MECHANICAL PROPERTIES 

venient to draw a torque-angle of twist (T—d) curve; this curve 
will have the same form as that given in Fig. 11, since c, J, and l 
depend only on the dimensions of the specimen which are con- 

(a) 
Test for Rivets and Bars 

Fig. 257.—Methods of testing material in direct shear. 

stant. The torque, T, at the proportional limit or yield-point, 
etc., may then be found and the corresponding unit-stress calcu¬ 
lated from this torque. 
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Fig. 258.—Torsion testing machine. By turning the handle the large gear 
is rotated, thereby exerting a twisting moment on the right-hand end of 
the specimen. This moment twists the specimen and deflects the pen¬ 
dulum to which the left-hand end of the specimen is attached; the 
deflection or swing of the pendulum is made to measure the value of 
the twisting moment. 
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True Measure of Shearing Elastic Strength.—Since the shearing 

unit-stress in a bar subjected to torsion, increases directly 

with the distance from the center of the bar, the fibers at the 

surface reach their proportional limits first, but the increase in the 

angle of twist due to the yielding of these surface fibers will be too 

small to be measured by the strain-measuring apparatus. Hence, 

the proportional limit, as found from the stress-strain (or torque- 

angle of twist) curve for a solid bar will not represent the real 

proportional limit of the material. By using hollow thin-walled 

cylindrical torsion specimens the proportional limit indicated by 

Fig. 259.—Shearing stress-strain diagram for ductile steeJ. 

the curve will be very close to the true value for the material 

since nearly all the material reaches the proportional limit at the 

same time. 

Tests 10 have shown that the true shearing elastic strength of 

ductile and semi-ductile steels is about eighty-five hundredths 

(0.85) of the elastic strength found from a test of solid cylindrical 

torsion specimen. 

Relation between Shearing and Tensile Elastic Strengths.— 

Tests 10 have shown also that the shearing elastic strength of duc¬ 

tile and semi-ductile steels does not vary much from six-tenths 

(0.6) of the tensile elastic strength, whether the elastic strengths 

are measured by the proportional limits, the useful limit points, or 

the yield-points. 

10 Bulletin No. 115, Engineering Experiment Station, University of Illinois. 
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QUESTIONS 

21. State reasons why the allowable working stresses in columns made of 

ductile material should, in general, be lower than in tension and flexural 
members. 

22. Why is the shearing elastic strength of a material found by means of a 

torsion test instead of a direct shearing test? 

23. Why is a hollow cylindrical torsion specimen required, in order to 

obtain an accurate value of the shearing proportional limit of a material? 

Ductility 

141. Definition of Ductility.—Ductility is that property of a 

material which enables it to acquire large permanent deformation 

and at the same time develop relatively large stress. It is closely 

associated with the properties plasticity and malleability since plas¬ 

tic and malleable materials can be worked (hammered, pressed, 

etc.) into various forms and will retain the forms impressed upon 

them; they acquire, therefore, large permanent deformations but 

the resistance that the material offers to the external forces im¬ 

pressed on it while being deformed is either relatively small or of 

secondary importance. Thus, lead and gold can be hammered 

into thin sheets and are said to be malleable; putty can be formed 

into various shapes with very little pressure and is said to be 

plastic; low carbon steel acquires a relatively large permanent 

elongation when subjected to a tensile load and maintains its 

resistance to the load and is, therefore, said to be ductile. There 

is, however, no sharp line of demarkation between the properties, 

ductility, plasticity, and malleability, but it is important to note 

that ductility is a property of a load-resisting material. 

142. Measure of Ductility.—There is no absolute quantitative 

measure of ductility. For comparative purposes the most fre¬ 

quently used measures are the values of the percentage of elonga¬ 

tion and the percentage of reduction of area of a specimen tested 

in tension. The percentage of elongation is found by dividing the 

increase in the gage length after rupture has occurred by the 

original gage length and multiplying the result by 100. The per¬ 

centage of reduction of area is found by dividing the difference 

between the area of the original and ruptured cross-sections by the 

original cross-section and multiplying the result by 100. 
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After the maximum load on the specimen of a ductile material 

has been reached the specimen begins to “ neck down ” and the 

load on the specimen decreases as the necking down continues 

(see Fig. 250). As indicated in Fig. 260, the deformation per unit 

length is very much greater at the neck-down portion than else¬ 

where. Therefore, the percentage elongation means little as a 

measure of ductility unless the gage length over which the defor¬ 

mation is measured is also specified. Thus a material that has a 

percentage of elongation of 32.5 in 8 in. might have a percentage 

of elongation of 60 in 2 in. (see Fig. 260). 
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Fig. 260.—The influence of the gage length on the percentage of elongation. 

Since during the “ necking down ” the load falls off rapidly 

and hence the material is in the process of rupturing, and since 

“ necking down ” should never occur in a member in a structure, 

there is justification for omitting the deformation that occurs dur¬ 

ing “ necking down ” in obtaining the percentage of elongation 

as a measure of ductility. Thus, according to this view, the duc¬ 

tility would be measured by the length OE (in Fig. 250). In 

commercial testing, however, the added time and expense involved 

in deducting the elongation due to the necking down has pre¬ 

vented the adoption of this method for measuring ductility. The 

percentage elongation, therefore, as usually found, includes the 

deformation due to the necking down (EF, Fig. 250) and also the 

small amount of elastic deformation (OA', Fig. 250). 



SIGNIFICANCE AND NEED OF DUCTILITY 353 

Need for Other Methods.—Various grades of steel and of copper 

alloys differ widely in the way they stretch, some contracting to a 

narrow neck and some stretching uniformly and breaking with 

very little necking down; for such material the percentage of reduc¬ 

tion of area in addition to the percentage of elongation is some¬ 

times desired. Further, specimens of thin sheets of metal fail 

with almost no elongation, due to tearing from one side, and the 

ruptured area of such specimens is difficult to measure, and hence 

a bend test is frequently used as an indication (rough measure) 

of their ductility. 

This test consists in bending the specimen through 180° 

without causing cracking of the material on the outside of the bent 

portion, the radius of the bend being zero for thin (less than f in.) 

specimens of ductile material, and about equal to the thickness 

of the specimen for thicker specimens. 

143. Significance and Need of Ductility.—Values that are 

considered to be satisfactory for the percentage of elongation and 

percentage of reduction of area for various materials are deter¬ 

mined mainly by the values obtained from material that is known 

to be approximately the best that can be produced, by the methods 

in use. In other words, it is practically impossible to state that a 

material must have a given percentage of elongation in order to be 

satisfactory for a given use. A value of 15 per cent elongation 

might be considered very satisfactory for a high carbon steel, 

whereas 25 per cent might be considered to be unsatisfactory for a 

low carbon steel, etc. Thus the values of the percentages of elonga¬ 

tion and reduction of area are a help in indicating to the engineer 

whether the material has been manufactured properly, in addition 

to being a measure of a property of the material. 

Why is Ductility Needed in Load-resisting Materialf—Is duc¬ 

tility of importance in material of members of structures and 

machines whose function or usefulness would be destroyed if the 

deformation of the member as a whole were large enough to make 

use of the ductility of the material? 

The answer to this question is closely connected with the dis¬ 

cussion of “ reserve strength ” in Art. 138 and also with the dis¬ 

cussion of “ toughness ” in Art. 147 and 148. Ductility is needed 

in the materials of structures and machines for the following 

reasons: 
1. To help prevent the destruction or collapse of the structure 
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due to excessive overloads, particularly impact loads, caused by 

accident, etc. This will be discussed more in detail under “ tough¬ 

ness/’ Art. 147. 

2. To relieve localized stresses in members by allowing the 

material to yield locally; this redistributes the stress, without 

causing any appreciable deformation of the member as a whole; 

thus the yielding prevents local failure of the material which in 

many cases would be the initial failure leading to the collapse of 

the whole member. These local stresses may be due to: 

(а) Loading that is different from that assumed in the design, 

and to secondary stresses not considered in the design; for example, 

the distribution of the load to the rivets in a riveted joint in design 

is usually assumed to be uniform, whereas the loads on the rivets 

are known to vary widely; the settlements of foundations fre¬ 

quently cause large changes in the loads on the members in the 

superstructure; the localized or secondary stresses (not considered 

in the design) in the eye of a steel eye-bar due to the bending action 

in the eye is sometimes sufficient to cause flaking off of the paint, 

etc. 

(б) Abrupt changes of section, such as corners in crank¬ 

shafts, roots of threads, key-ways, etc., at which high stresses 

always exist. 

(c) Non-homogeneity of the material due to a segregation 

in the ingot, and non-metallic inclusions and other defects in 

the case of steel; knots in timber; etc. 

(d) Straining members of structures during fabricating and 

erecting. 

Ductility, therefore, is of great importance in materials of 

most structures and machines and the amount of ductility is 

usually made as great as possible consistent with adequate strength; 

for, in general, the ductility of steel and other metals is low if the 

strength is high. 

Values of percentage of elongation for various materials are 

given in the tables of Chapter XVI. 

QUESTIONS 

24. Define ductility. What quantities are used as a measure of ductility? 

25. Why should the gage length be specified in giving the percentage of 
elongation? 
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26. Why is ductility desired in a force-resisting member when, in order to 

make use of this property in the member as a whole, the member must take 

large permanent deformations and hence fail to fulfill its function in the struc¬ 
ture? 

27. State several causes of localized yielding in members of structures, and 

give illustrations. 

28. Is there any way of deciding how much ductility is required in material 

for a given use? 

Stiffness 

144. Definition and Measure.—The property of stiffness of a 

material is the rate at which the stress in the material increases 

with the strain. Hence, the stiffness of a material, corresponding 

to any unit-stress, may be measured by the slope of a line drawn 

tangent to the stress-strain curve at the point representing that 

unit-stress. 

The stiffness of steel, or any other material that has a straight 

stress-strain diagram up to the proportional limit, is constant at all 

stresses below the proportional limit and is measured by the mod¬ 

ulus of elasticity of the material ^2? = ^, Art. 5^, that is, by the rate 

of increase in unit-stress with unit-strain. Stiffness, therefore, is 

measured in the same units as is unit-stress (pounds per square 

inch) since e is the ratio of a length to a length and hence is 

merely a number. 

As shown in the tensile stress-strain diagram of mild steel in 

Fig. 250, the stiffness of mild steel when subjected to a tensile 

stress represented by H (about half-way between the yield-point 

and the ultimate strength) is very much less than at stresses below 

the proportional limit. At the yield-point the stiffness is zero. 

Further, it will be noted that Johnson’s apparent elastic limit 

(Art. 137d) is the unit-stress at which the stiffness of the material 

is 50 per cent less than at stresses below the proportional limit. 

Since in most structures the primary stresses developed are less 

than the elastic strength of the material the modulus of elasticity 

measures the stiffness of the material as used in such service, and 

hence is the most important measure of stiffness for design purposes. 

However, the low value of the stiffness of the material at points of 

high localized stress may be of importance, as for example, in the 

resistance of columns in which the stiffness of the material is an 
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important factor and in which localized stresses have a relatively 

large influence. 

For material that has a curved stress-strain diagram (Figs. 

261 and 262a), the modulus of elasticity is frequently taken as the 

slope of the tangent to the curve at zero stress, and is called the 

tangent or initial modulus. Thus, in Fig. 262(a) the slope of the 

line OA is the tangent modulus. But the tangent modulus does 

not measure the stiffness of the material when the material is 

resisting the working stress; this value, however, is frequently 

needed as, for example, in the design of reinforced concrete col¬ 

umns which involves the ratio of the moduli of elasticity of steel 

and concrete at the working stresses. The modulus of elasticity, 

therefore, is sometimes taken as the slope of a line OBC where the 

ordinate to B represents the working unit-stress; the slope of 

OBC is called the secant modulus. Although the secant modulus 

does not, according to the definition of stiffness, measure the 

stiffness of the material at the stress B'B, it is approximately an 
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average value of the stiffness as the material is stressed up to the 
working stress. 

In Fig. 263 are shown the stress-strain curves for four struc¬ 
tural materials plotted to the same pair of axes and to the same 
scales. These curves show that at stresses below the elastic 
strengths of the materials, wood is only about one-twentieth as 
stiff as steel, and that cast iron is about one-half as stiff as 
steel. The medium carbon steel has the greatest static strength 

Fig. 262.—Methods of obtaining modulus of elasticity. 

and the low carbon steel is the most ductile, but both grades of 
steel have the same stiffness at stresses below the proportional 
limits. In fact the tensile moduli of elasticity of practically all 
steels including heat-treated alloy-steels are approximately the 
same; namely, 30,000,000 lb. per sq. in., although the elastic 
strengths may vary from 25,000 to 200,000 lb. per sq. in. The 
compressive modulus of elasticity is nearly the same as the ten¬ 
sile but the shearing modulus of elasticity of steel (and of most 
metals) is much less than the tensile or compressive modulus. In 
other words, the shearing strain in steel increases with shear¬ 
ing stress much faster than elongation increases with tensile stress. 

In plotting a stress-strain curve from test data it frequently 
happens that the curve does not pass through the origin; the 
slope of the curve, which represents the modulus of elasticity, is 
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not then expressed by the ratio -. To obtain the modulus of 

elasticity a line may be drawn through the origin and parallel 

to the plotted curve (Fig. 2626) and the value of ~ as obtained from 

this line will be the modulus of elasticity; or, the difference between 

two values of the unit-stress may be divided by the difference in 

(As 
i£ = —, Fig. 

2626). The scale of plotting should be such as to cause the curve 

Unit-strain 

Fig. 263.—Stress-strain diagrams for four structural materials. 

to make an angle of from 30° to 45° with the vertical in order to 

obtain a reliable value for the modulus. Further, the longer the 

gage length the more accurate will be the value of the modulus; 

a gage length of not less than 8 in. is recommended by the American 

Society for Testing Materials. The* extensometer used should 

measure the deformation on at least two sides of the specimen, 

and the same precautions concerning axial loads should be taken 

as in determining the proportional limit (see Art. 137a). Values 

of moduli of elasticity for various materials are given in the tables 

of Chapter XVI. 
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145. Use and Significance of Stiffness.—A distinction should 

be made between the stiffness of a structural member, such as an 

eye bar, a beam, or a shaft, etc., when subjected to loads and the 

stiffness of the material of which the member is made. The stiff¬ 

ness of the member depends on the size and form of the member 

as well as on the stiffness of the material. The manner in which 

the size and form of a member affects its stiffness is discussed in 

Part I and, as there pointed out, stiffness of a member rather than 

its strength may be the governing factor in a design. Under these 

conditions the stiffness of the material is an important property of 

the material. Thus a machine tool such as a planer lathe tool, 

drill press, or grinding machine may deflect too much for accurate 

work even though the stress in it is relatively small; a long shaft 

may twist so much that troublesome vibrations are set up under 

fluctuating loads even though the shaft is amply strong; a long 

floor beam may deflect so much that the plastered ceiling beneath 

will crack even though the maximum stress in the beam is well 

within the elastic strength of the material; the guides for a loco¬ 

motive cross-head may deflect enough to interfere with the running 

of the engine, etc. 

If the members in the above illustrations were made of steel 

the trouble could not be relieved by merely substituting a member 

made of a stronger grade of steel; for, if the loads and dimensions 

remain the same the stresses do not change, and hence the deflec¬ 

tion of the member could change only because of a change in the 

stiffness of the material, but the stiffness of the strongest (high 

carbon) steel is the same as that of the softest (low carbon) steel, 

consequently the deformation or deflection of the member would 

not change. 

If, however, the floor beam in the above illustration were made 

of wood, the beam could be made much stiffer by replacing it by 

one having the same dimensions but made of steel, for although 

the stress in the steel beam would be the same as that in the timber 

beam (the loads and dimensions remaining constant), the deflection 

of the steel beam would be much less. 

The property of stiffness is also of great importance in deter¬ 

mining the resistance of material to energy loads, that is, in deter¬ 

mining the amount of energy the material can absorb; for, as 

shown in Art. 116 and discussed in the following article, the amount 

of energy that a material can absorb per unit volume (cubic inch) 
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1 s ^ 
is - when stressed to its elastic strength, 

z hi 
Thus if the stiffness 

of a material is small (assuming the strength to remain constant) 

the capacity of the material to absorb energy without being stressed 

above its elastic strength is large. Thus the low stiffness of wood 

makes it desirable for railway ties and for spokes in automobile 

wheels, etc# 

Values of the moduli of elasticity of various materials are given 

in the tables of Chapter XVI. 

QUESTIONS 

29. Define stiffness. How is the stiffness of a material found? In what 

units is it expressed? 

30. Is the stiffness of structural steel when stressed above the yield-point 

greater or less than when stressed below the yield-point? 

31. How is the stiffness of a material measured if the material has a curved 

stress-strain diagram? Define tangent modulus and secant modulus. 

32. Compare the stiffness of steel, wood and cast-iron at stresses below 

their elastic strengths. 

33. Is the stiffness of steel at stresses below the proportional limit the 

same for all grades of steel? Compare- the tensile and shearing stiffness of 

steel at stresses below the proportional limits. 

34. Under what conditions is it desirable for a force-resisting member to be 

made of material having a high degree of stiffness? Having a low degree of 

stiffness? 

Resilience; Elastic Energy Strength 

146. Definition, Measure and Significance of Resilience.— 

Resilience is the property of a material that enables the material 

to give up or release energy (that is, to do work) as the stress is 

released. 

The energy recovered when the stress is released from the elastic 

limit is called elastic resilience, and the energy recovered per unit 
volume is called the modulus of elastic resilience of a material. 

Now all the work done in stressing a material to its elastic limit (or 

to any stress less than the elastic limit) is stored in the material 

and can be recovered as the stress is released; that is, none of 

the energy is dissipated in heat in causing structural damage, and 
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hence, the work done per unit-volume in stressing the material 

to the elastic limit is equal numerically to the modulus of elastic 

resilience, k. Therefore, k is represented by the area OAB (Fig. 

264) and is equal to 

k 2 E’ 
as explained in Art. 116. 

But the elastic energy strength of a material is the amount of 

work that can be done on (or absorbed by) the material per unit 

volume in stressing the ma¬ 

terial to its elastic limit (see 

Art. 116); therefore, the mod¬ 

ulus of resilience is a measure 

of the elastic energy strength of 

the material. The elastic 

energy strength of a struc¬ 

tural member, however, de¬ 

pends on the form and di¬ 

mensions of the member as 

well as on the elastic energy 

strength of the material of 

which the member is made 

(see Chapter XIII). 

A 

^Hyper-elastic 
Resilience 

-Elastic Ky 
Resilience Y/y 

1 § E 
0 

Fig. 264. 

Unit-strain 

-Areas representing resilience. 

In obtaining the tensile modulus of resilience, se and E in the 

above expression are the tensile elastic limit and the tensile modulus 

of elasticity, respectively; whereas, in expressing the shearing 

modulus of resilience se and E are the shearing elastic limit and the 

shearing modulus of elasticity, respectively. 

The ideal material, then, for resisting energy loads that must 

not cause plastic deformation in the material is one having a high 

elastic strength and a low modulus of elasticity. Thus, the mod¬ 

ulus of resilience of high carbon and alloy steels is much larger 

than that of low carbon steel due solely to the greater elastic 

strength, since the modulus of elasticity is not influenced by the 

carbon or alloy content. Further, the shearing modulus of resil¬ 

ience of steel, ks, is approximately equal to the tensile modulus, kt. 

This is shown as follows: 

* 2 E, 

but from Art. 5 and 140, ss = 0.6s< and Es = %Et. 

and fc=1^2 
‘ 2 Et ’ 
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Therefore, 
. _l(0-6)2 (,s.)i2 
8 2 0.4 Et 

1 approximately. 
2 hi t 

Thus, the resistance that steel can offer to energy loads without 

acquiring plastic deformation is approximately independent of 

the kind of stress to which the steel is subjected (see Art. 113). 

On the other hand, bronze is as strong as some grades of steel 

and its stiffness (modulus of elasticity) is considerably lower. 

Therefore bronze may be nearly as good material for a spring, 

etc., as the poorer grades of spring steel. Likewise timber is low 

in stiffness and hence possesses a fair degree of resilience even 

though its elastic strength is low. (See Table XI of Chapter XVI 

for a comparison of the elastic energy strengths of various mate¬ 

rials) . 

If a bar is stressed beyond the yield-point of the material most 

of the work done is dissipated in causing structural damage. If, 

however, the stress is released from some value such as EC (Fig. 

264), the stress-strain diagram will take the form CD. That is, the 

part DE of the total unit-strain OE is elastic deformation, and the 

area DCE represents the energy recovered per unit-volume and 

hence measures the modulus of resilience corresponding to the 

stress EC. But it is convenient to use the term modulus of 

elastic resilience for the energy represented by the area OAB and 

to use the term modulus of hyper-elastic resilience for the energy 

recovered per unit volume when the stress in the material is 

released from a value above the elastic strength of the material. 

The modulus of hyper-elastic resilience is a property, however, 

of little use in selecting material for resisting loads, whereas the 

modulus of elastic resilience is of great importance in selecting 

materials for members to be subjected to energy loads that are to 

develop stresses less than the elastic strength of the material, such 

as springs, connecting rods of forging hammers and of rock drills, 

various automobile parts, etc. 

As shown in Table XI, the value of the modulus of elastic resil¬ 

ience of various grades of steel vary from about 15 to 670 in.-lb. 

per cu. in., the latter value being obtained from special alloy steel 

used for springs, axles, gears, etc., which must resist energy loads 

without being permanently distorted. 
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QUESTIONS 

35. Define resilience, elastic resilience, modulus of elastic resilience.. 

What is the quantitative expression for the modulus of elastic resilience? 

36. Define elastic energy strength of a material and show that it is measured 

by the modulus of elastic resilience. 

37. What use of material requires a high modulus of elastic resilience? 

38. What is the modulus of hyper-elastic resilience? Is it of importance: 

in force-resisting members? 

39. Compare the tensile and shearing moduli of elastic resilience of steel. 

Toughness; Ultimate Energy Strength 

147. Definition and Measure of Toughness.—Toughness is 

that property of a material that enables it to absorb energy while 

being stressed above its elastic strength, that is, while incurring 

plastic deformation. Thus, the more work that has to be done in 

stressing a material from its elastic limit to its ultimate strength 

the greater is the toughness of the material. 

Measure of Toughness.—One measure of the toughness of a 

material is the amount of work per unit-volume of the material 

required to rupture the 

material when subjected 

to a gradually increasing 

(static) load. This meas¬ 

ure of toughness is repre¬ 

sented by the area under | 

a stress-strain curve; this 

area, however, includes >§ 

the work done in stress¬ 

ing the material to the 

proportional limit (that 

is, the resilience of the 

material), but the area F 

under the straight-line 

part of the stress-strain 

diagram of ductile materials is negligible in comparison with the 

total area as is evident from an inspection of Fig. 250(a); and 

it can be neglected even for relatively brittle materials without. 

i. 265.—Toughness represented by areas 

under stress-strain curves. 
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serious error particularly since an exact quantitative measure of 

toughness is not as a rule required. 

The stress-strain diagrams in Fig. 265 show that the high carbon 

steel has the greatest static strength (both elastic and ultimate) 

and the greatest modulus of resilience (or elastic energy strength), 

that the medium carbon steel has the greatest toughness and that 

the low carbon steel has the greatest ductility. 

Since the area under the stress-strain diagram of a ductile 

material is roughly proportional to the product of the ultimate 

static strength and the percentage of elongation of the material, 

this product, sometimes called the toughness index number or merit 

number, is used frequently for comparative purposes as an approx¬ 

imate measure of toughness. (See Art. 116 for expressions from 

which an approximate value of the area under a stress-strain curve 

may be found.) Values for toughness of several materials are 

given in Table XI of Chapter XVI. 

148. Significance of Toughness.—When a static overload due 

to accident or other cause is applied to a member of a structure, 

resulting in stresses greater than the elastic strength of the mate¬ 

rial, the ultimate strength of the material determines whether the 

member will successfully resist the load or will rupture, that is, the 

reserve strength of the material (see Art. 138), if sufficient, becomes 

available in preventing rupture. On the other hand, if an energy 

overload, that is, an amount of energy in excess of the resilience 

of the member (see Art. 114), is applied to the member by a moving 

body, thereby causing stresses in the member greater than the 

elastic strength of the material, the toughness of the material 

determines whether the energy of the moving body will be 

absorbed by the member or will rupture the member. In other 

words, the toughness of a material is a measure of the ultimate 

energy strength of the material and it furnishes reserve strength 

for resisting excessive energy loads. 

In service, then, in which material is subjected to energy loads 

and in which the stresses are to be kept within the elastic strength 

of the material without provision for accidental overloads, etc., 

1 s<? 
the resilience, ^ -gr, of the material is of prime importance. Thus 

the material in piston rods on steam forging hammers and rock 

drills should have high resilience rather than toughness; likewise, 

the materials in most springs and many gears are selected because 
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of their high resilience. On the other hand, the material in the 

frame of a railway locomotive or car which in service is practically 

certain to be subjected to impact loads that will cause stresses 

above the yield-point of the material, toughness in addition to resili¬ 

ence is of importance. The same is true to a slightly lesser extent 

of the material in ships and bridges. For example, the stresses 

in the members of bridges under conditions of service are expected 

to be less than the static elastic strength of the material (except 

the localized stresses, see Art. 143) but if a minor derailment or 

other accident should occur on a bridge, requiring that a con¬ 

siderable amount of energy present in the moving train shall 

be absorbed by the bridge the material must possess toughness 

if the bridge does not collapse. Automobile frames, axles, gears, 

etc., furnish other examples of members for which toughness, in 

addition to resilience, is an essential property. 

149. The Single-blow Notched-bar Impact Test.—This test 

was devised in response to a demand for a quick and convenient 

method of determining the suitability of a material for resisting 

impact and energy loads. It was urged that the resistance of a 

material to impact should be determined from a test in which the 

load is applied by a moving body. It is doubtful, however, whether 

this test determines the ultimate impact or energy resistance 

(toughness) of a material as the material is used in engineering 

structures and machines, for reasons discussed below. 

The test is usually made with a Charpy (or Izod n) pendulum 

machine (Fig. 266); the specimen (Fig. 267) is a notched rect¬ 

angular beam. The energy lost by the pendulum in rupturing 

the specimen is the value found from the test; this value is some¬ 

times referred to as the “ Charpy value.” 

In order to cause a specimen of ductile material to rupture 

when struck by the pendulum, instead of merely bending, the 

specimen must be notched.12 The form of the notch has a marked 

11 The Izod machine is used mainly in France and England and is prac¬ 

tically the same as the Charpy machine except that the specimen used in the 

Izod machine is tested as a cantilever beam whereas the Charpy machine 

tests the specimen as a simple beam; the form of the notch also is usually 

somewhat different. 

12 Although the controlling idea in devising the test was that of applying 

the load with impact, it is now recognized that the significant factor in the 

test is the notched form of specimen and the accompanying concentration of 

stress at the root of the notch. 
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influence on the amount of energy required to rupture the speci¬ 

men and hence the values found from the tests are meaningless 

even for comparative purposes unless the specimen is standard¬ 

ized; two forms of specimens frequently used are shown in Fig. 

267. 

Now, the portion of the material in the specimen that absorbs 

the greater part of the energy is near the bottom of the notch but 

Fig. 266.—Single-blow, notched-bar impact testing machine. (The Charpy 

machine.) The pendulum when released from its position Z strikes the 

specimen 5 and rises to the position Z". Thus the center of gravity, 

G, of the pendulum lowers a distance (h-h") as the pointer N moves to 

the position N"; the pointer remains at N" after the pendulum swings 

back from its position Z" and hence, the angle of rise is indicated on 

the scale E. The energy expended by the pendulum in rupturing the 

specimen is calculated from the measured quantities and is the value 

obtained from the test. 

the amount of material involved is indefinite and indeterminate, 

and hence the toughness, or energy absorbed per unit volume, is 

indeterminate. Again, it is doubtful if the resistance of the mate¬ 

rial, as found in this test, is the resistance offered by a material 

to an impact or energy load as such loads occur in service; the 

high local stress at the root of the notch, where the section is 
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abruptly reduced, requires that the material at the root of this 

notched section shall fail suddenly before other parts of the 

specimen can be stressed, and hence before those parts can be 

made to absorb much of the energy. This action produces sudden 

tearing of the material, and materials in machines and structures 

probably seldom if ever are subjected to such severe action, even 

though some machine members have rather abrupt changes of 

sections, such as at sections at roots of screw threads, tool marks 

and deep scratches, at roots of small radii, etc. (Some engineers, 

nevertheless, feel that the test is not too severe.) 

The test, however, is rather widely used and is of special value 

in determining whether certain heat treatments of steel have 

been carried out successfully since heat treatments that have been 

poorly done affect the value obtained from the single-blow notched- 

bar test very markedly. This fact is of .great importance since 

much of the material used in automobiles, aeroplanes, and many 

special machines are heat treated in order to secure high strength 

and light weight and they must also have considerable toughness 

or reserve impact strength to resist accidental impact overloads. 

By heat treating the proper steels these desirable properties can 

be produced provided the heat treatments are successfully carried 

out, and hence a convenient test that sharply differentiates between 

successful and poor heat treatments is of great value. But mate¬ 

rials should not be selected on the basis of Charpy values alone; 

the results of impact tests should be interpreted in connection with 

other properties of the material. 

QUESTIONS 

40. Define toughness of a material. How is it measured? 

41. What is meant by toughness index number or merit number? 

42. What uses of material require a high degree of toughness? Give illus¬ 

trations. 

43. Does the single-blow notched-bar impact test measure the toughness of 

the material? If not, why? What significance has this test? 

Hardness 

150. Definition and Measure of Hardness.—The meaning of 

hardness of a material is different with the different operations or 
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services in which the material is used; the operations in which 

hardness is of special importance being scratching, abrasion, 

cutting, and penetration or indentation. Hardness seldom if 

ever signifies a single physical property of a material, but it is, 

however, always associated with stresses that are accompanied 

by plastic or permanent deformations. Hardness, therefore, may 

be defined as the resistance which a material offers to the com¬ 

plex and indefinite stresses that are brought into action in operation 

involving scratching, abrasion, cutting and penetration. 

The particular hardness that is of greatest importance in con¬ 

nection with the material in load-resisting members is the resist¬ 

ance to penetration or indentation. Two methods of measuring 

the resistance of a material to indentation are in wide use; namely, 

the Brinell ball test, which is a slow or static penetration test, and 

the Shore scleroscope test, which is a rapid or dynamic penetration 

test. 

151. The Brinell Ball Test.—The Brinell machine (Fig. 268) 

applies a pressure of 3000 kilograms (or 500 kilograms for very 

soft material) for fifteen to thirty seconds to a ball 10 millimeters 

in diameter, and this ball, which rests on the surface of the test 

specimen, causes a permanent indentation in the specimen, the 

diameter or width of the indentation being measured by a simply 

and conveniently constructed microscope. The load in kilograms 

is divided by the surface of indentation in square millimeters and 

the resulting average intensity of pressure is called a Brinell num¬ 

ber. (Brinell numbers for various materials are given in Table I, 

Chapter XVI.) 

152. The Shore Scleroscope.—The Shore scleroscope (Fig. 

269), releases a small steel hammer from a height of about 10 

inches, allowing it to fall freely in a glass tube with a diameter 

slightly larger than that of the hammer. The steel hammer 

weighs 2 ounce and has a diamond striking-point the face of which 

is rounded to a definite radius. When the hammer strikes the 

specimen it penetrates the surface of the specimen before rebound¬ 

ing and hence produces a permanent but minute deformation. In 

so doing, part of the energy acquired by the hammer in falling is 

absorbed, and hence the height of rebound is less than the original 

height of fall. The rebound of the hammer is observed on the 

vertical scale and this reading (called the scleroscope number) 

is taken as the measure of the hardness of the material; the harder 
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the material the higher the rebound. The scale reading of 100 is 

frequently fixed as the height of rebound of the hammer when it 

strikes a special hardened steel surface; this surface is then called 
the standard surface. 

Fig. 268.—Brinell hardness testing machine. The ball B is pressed into the 

specimen S by the oil pressure on the piston L. The pressure is main¬ 

tained constant for about thirty seconds by pumping (by hand) so that 

the known weight W is kept in a floating position. The specimen rests 

on a spherical-seated bearing block. The diameter of the indentation 

indicates the hardness of the material. 

153. Limitations of the Tests.—The Brinell test is not satis¬ 

factory for testing extremely hard materials, since the ball itself 

deforms too much, nor is it satisfactory for thin sheets of material 

such as saw blades, etc. Further, in testing finished products 
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whose surfaces must not be dented, the Brinell test cannot be 
used.13 In these three respects the scleroscope is to be preferred, 
but, in general, the Brinell test is usually considered to be the more 
reliable, since in the Brinell test more of the material is tested and 

Fig. 269.—Scleroscope hardness-testing machine. The hammer W with its 

diamond D falls freely in the glass tube T. The diamond point strikes 
the specimen S and rebounds; the height of rebound is read on the 

scale E, the value read on the scale being called the “scleroscope hard¬ 
ness number.” By squeezing the rubber bulb R, the hammer is raised; 

the hammer is then held by the latch C until the bulb is again squeezed 

when the latch is released and the hammer falls. 

the character or condition of the material and of the surface affects 
the results less than in the scleroscope test. Thus rubber and wood 

13 A smaller machine called the “ Baby Brinell,” which uses a ball only 

ts inch in diameter, may be used with relatively thin material. 
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may give the same rebound with the scleroscope, although the two 

materials differ in hardness. 

154. Need and Significance of Hardness.—Since hardness is 

closely associated with the resisting stresses that accompany 

plastic deformation, the yield-point or ultimate strength gives a 

general index of the hardness of a material. In fact, test results 14 

show that there is a fairly definite linear relation between the ulti¬ 

mate tensile strength of carbon steel and the Brinell and sclero¬ 

scope numbers. Therefore, the Brinell and scleroscope tests form 

convenient methods of estimating the tensile strength of machined 

or other parts from which it is impossible or not feasible to cut a 

test specimen. 

R. R. Abbott found that the relations between the tensile 

ultimate strength, su, and the Brinell number, B, and scleroscope 

number s, for carbon and alloy steels was expressed approximately 

by the following equations: 

s* = 0.70R - 26 = 4.0$ -15, 

and that the relation between the Brinell and scleroscope number 

was approximately 

£ = 5.5/S+28. 

But, as noted above, there is no single test that satisfactorily 

measures all of the various kinds of hardness required in service. 

Further, the degree of hardness desired in producing any object 

has been determined almost entirely by experience; the Brinell, 

scleroscope, or other hardness tests assist in attaining uniformity 

of product but not in determining the degree of hardness the mate¬ 

rial should have for the service required. 

Many structural and machine members require a relatively 

high degree of hardness in addition to some one or more other 

properties such as resilience, toughness, etc.; thus railway rails, 

locomotive and car wheel tires, automobile gears and axles, armor 

plate, cutting edges of steam shovels, jaws of stone crushers, dies 

for wire drawing, etc., must have high resistance to indentation 

or abrasion or both. And since strength and hardness of metals 

are, in general, dependent properties, steel used for the above- 

14 Abbott, R. R. Proceedings, A.S.T.M., Vol. 15, 1915, p. 43 (see also 

Jour, of Iron and Steel Inst. 1909). 
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mentioned parts is usually relatively high carbon steel since the 

strength and hardness of steel increase with the carbon content. 

But the ductility and toughness of steel decrease with the carbon 

content and hence for those members which require toughness in 

addition to hardness special alloy steels are used-which possess a 

fair degree of ductility and toughness as well as high strength 

and hardness. Thus automobile gears and axles are frequently 

made of chrome nickel steel, armor plate of chromium steel, jaws 

of crushers of chromium or manganese steel, etc. And as noted 

above, after experience has demonstrated the kind of material to 

be used for a given service and the treatment to be given the 

material, a hardness test is frequently a convenient way of deter¬ 

mining whether the desired properties are being obtained. 

Resistance to Wear.—Sometimes the property of hardness as 

defined above is made to include “ resistance to wear.” However, 

resistance to wear depends on the ductility (or plasticity) of the 

material perhaps more than on its strength-hardness. That is, a 

good wearing metal must resist the displacement of its particles 

(and hence have hardness) but when they are displaced it must 

resist the removal of the particles from the body (and hence have 

plasticity). In general, if two metals have the same tensile 

strength the one having the greater ductility will possess the greater 

resistance to wear, although the resistance to wear of both metals 

would be increased by increasing the tensile strengths and the 

fineness of crystalline structure, assuming the ductility to remain 

constant. 

QUESTIONS 

44. Define hardness of a material. 

45. Describe the Brinell ball test and the Shore scleroscope test. What 

are the advantages and disadvantages of each? 

46. Can either of these tests be used to determine the hardness needed for 

a given use? If not, how is this determined? 

47. Give examples of uses of material in which hardness is one of the essen¬ 

tial properties of the material. 

Fatigue Strength 

155. Definition and Measure of Fatigue Strength.—The 

fatigue strength of a material is the greatest resistance the mate- 
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rial can offer, without rupturing, when subjected to a load that is 

repeated a great many times. As discussed in Chapter XIV, 

steel may rupture when subjected to a repeated load even when the 

calculated stress in the material is considerably less than the 

static proportional limit or elastic limit of the material. In other 

words, the fatigue ultimate strength of the material may be not 

only less than the static ultimate strength but even less than the 

static elastic strength of the material. Further, a member that 

fails due to a repeated load seldom gives warning of the approach¬ 

ing rupture; that is, no measurable plastic yielding of the member 

occurs at a stress less than the stress at which rupture occurs. 

Thus, there is no measurable elastic fatigue strength as there is 

with static strength; the only measurable fatigue strength is the 

ultimate or rupture fatigue strength. (See Art. 126 for an explan¬ 

ation of a fatigue failure.) 

The measure of the fatigue (ultimate) strength of a material 

is the greatest unit-stress in the material that can be repeated an 

indefinitely large number of times without causing the material 

to rupture. This unit-stress is called the endurance limit of the 

material (see Art. 125). Experimental investigations15 have 

established, so far, endurance limits only for wrought ferrous 

metals (rolled and forged steel and wrought iron); comparatively 

little work has been done on cast-iron or steel castings or on non- 

ferrous metals. 

Values of the endurance limits (fatigue strengths) of various 

grades of iron and steel with completely reversed bending stress 

are given in Table 7 of Chaper XIV; and in Table XII of Chapter 

XVI; and the use of these values in obtaining the endurance 

limits with direct axial stress, with shearing stress and with various 

ranges of stress are discussed in Chapter XIV. The main object 

of this section is to discuss various methods of determining the 

endurance limit of materials. 
156. Methods of Determining the Endurance Limit.—(a) 

Direct Method. The direct method of determining the endurance 

limit of a material is to test several specimens of the material 

as described in Art. 125, and to plot an s-iV diagram (see Figs. 

237 and 238). Repeated stress tests have not yet been standard- 

15 See Bulletins 124, 136 and 142 of the Engineering Experiment Station of 

the University of Illinois; an extensive bibliography is given in Bulletins 

124 and 142. 
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ized, but two types of repeated stress testing machines eommonly 

used for determining the endurance limit will here be described 

briefly. 

In Fig. 270 is shown a machine which applies repeated flexural 

stress by means of a crank and connecting rod and measures the 

bending moment applied to the specimen, by means of the com¬ 

pression of calibrated 

springs. Power is 

furnished by a motor 

M (or from a line 

shaft) and a crank C 

with an adjustable 

throw is driven by the 

motor. The crank is 

attached to a connect¬ 

ing rod R which bends 

a specimen S back and 

forth. The motion of 

the specimen is resist¬ 

ed by springs G acting 

through a bent lever 

A. The amount of 

bending moment ap¬ 

plied to the specimen 

may be varied by 

changing the throw of 

the crank and is meas¬ 

ured by the amount 

of compression of the 

springs G. This compression is indicated by the throw of the 

arm I to the end of which is attached a pencil that records 

the throw on paper wrapped round the drum D. The drum 

D is rotated by a worm and wheel drive from the main shaft 

of the machine, and there is consequently recorded on the paper 

a diagram whose width is a measure of the bending moment 

on the specimen and whose length is a measure of the number 

of applications of stress to the specimen. The number of 

applications of stress is also indicated by a counter K. From the 

bending moment the maximum unit-stress applied to the specimen 

can be determined. Usually this type of machine is used to pro- 

Fig. 270.—Upton-Lewis repeated-stress testing 

machine. 



DETERMINING THE ENDURANCE LIMIT 375 

duce reversals of bending stress, but by varying the springs G 

other stress ranges can be applied to the specimen. The Upton- 

Lewis machine (Fig. 270) is the commonest example of this type 

of machine used in the United States. 

Fig. 271 shows in diagram a testing machine which produces 

reversals of bending stress by the use of a rotating flexure specimen. 

The specimen S is supported on ball bearings B and driven by a 

pulley P. Weights are hung from a second set of ball bearings B'} 

and these weights cause bending stresses in the specimen. The 

bending stress in the upper fibers of the specimen is compression, 

and in the lower fibers, tension. As the specimen is rotated the 

stress for any fiber changes from compression to tension, and the 

stress is completely reversed. The maximum unit-stress for both 

tension and compression can be computed from the amount of 

weights W applied, the dimensions of the specimen, and the dis¬ 

tances between bearings; the bending moment is constant for all 

sections between the two center bearings. A counter K indicates 

the number of reversals of stress given to the specimen, and when 

the specimen breaks the counter automatically stops. 

(6) Rise-of -Temperature Test.—The determination of the endur¬ 

ance limit by the actual application of repeated stress as outlined 

above requires so much time that it is not as serviceable in com¬ 

mercial testing as is desired, and hence various short-time or accel¬ 

erated tests for determining the endurance limit have been tried; 

one such test that has proven to be fairly reliable for wrought 
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ferrous metals is the rise-of-temperature test.16 This test consists 

in subjecting a specimen to a small number of reversals (about 500) 

of a known stress and measuring the rise in temperature of the 

specimen, at the section subjected to the maximum stress, by 

means of a thermo-couple and a galvanometer, or by some other 

method; the same test is then repeated two or three times, increas¬ 

ing the stress in each successive test until a well-marked rise of 

temperature can be detected. The endurance limit is taken from 

a stress-temperature diagram as the unit-stress at which the rate 

of rise of temperature shows a marked increase. The values of the 

endurance limit for wrought ferrous metals found by this method 

vary but little from those found by the direct long-time repeated- 

stress tests. However, this test, or any other short-time test thus 

far developed, is essentially supplementary to, rather than a sub¬ 

stitute for, the long-time endurance test. 

(c) Relation of Endurance Limit to Other Physical Properties.— 

It was formerly thought that the elastic limit (or proportional 

limit) was a measure of the resistance of a material to repeated 

stress. Now, as pointed out in Art. 137, the elastic limit is an 

index of the beginning of appreciable plastic action in a material 

although it is rather an uncertain quantity as discussed in Art. 137, 

whereas the failure of a material due to repeated stress, as shown 

by microscope examination of specimens, seems to be a progressive 

tearing apart, or shearing apart (rupturing) across minute areas of 

the metal (see Art. 126). Evidence of the truth of this statement 

is found by examining the photomicrographs in Figs. 272 (6) and (c) 

which show the surface of a piece of steel stressed slightly beyond 

the yield-point when subjected to a single steady load. In Fig. 

272(6) may be seen a few slip lines, which, under repeated loading9 

might develop into a fatigue failure similar to that shown in Fig. 

273(6); there may also be seen in Fig. 272(6) dark patches which 

locate “ valleys ” caused by the plastic wrinkling of the surface 

of the steel; this wrinkling is more pronounced in Fig. 272(c). 

The beginning of this plastic action coincides approximately with 

the proportional limit of the steel rather than with the ultimate 

strength, and spread of the wrinkled areas is in contrast with the 

gradual spread of minute fractures which constitutes fatigue failure 

as indicated in Fig. 273(6). Thus it does not appear strange that 

16 See Bulletin 124 of the Engineering Experiment Station of the Univer¬ 

sity of Illinois. 
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the results of repeated stress tests show a fairly good correlation 

between the endurance limit and the ultimate tensile strength of 

iron or steel, whereas the correlation between the proportional 

limit (or yield-point) and the endurance limit is not so close. 

c 

Fig. 272.—Photomicrographs of steel subjected to a static load: (a) Speci¬ 

men in unstressed state. (6) Specimen stressed slightly beyond the 

yield-point, (c) Specimen stressed considerably beyond the yield-point. 

Experimental data (see Table XII of Chapter XVI) are rather 

consistent in showing that, for a rather wide range of steels, the 

endurance limit with completely reversed bending stress is approx¬ 

imately 0.5 of the tensile ultimate stress17 (nearly all the steels 

17 As pointed out in Chapter XIV, the endurance limit with complete 

reversals of axial stress (tension-compression) may be as low as 0.60 of the 

endurance limit with reversal of bending stress. With reversed shearing stress 

the endurance limit is approximately 0.55 of the endurance limit with reversed 

bending stress. 
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tested give values between 0.4 and 0.6). If actual test data from 

repeated-stress tests are available the endurance limit should be 

determined from such test data, but if such data are not available 

it is recommended that the endurance limit for a wrought ferrous 

metal with completely reversed bending stress be estimated to be 

0.45 per cent of the static ultimate tensile strength. Further, since 

the “ Brinell hardness number ” (Art. 151) is a rough index of the 

tensile ultimate strength it is also a rough index of the fatigue 

strength of the material. 

Fig. 273.—Photomicrograph of steel subjected to a repeated load, (a) 

Specimen in unstressed state. (6) Specimen after being subjected to 

many repetitions of stress considerably above the endurance limit. 

No values can be given for estimating the fatigue strength of 

non-ferrous metals or of non-metallic materials until more test 

data are available. 

QUESTIONS 

48. Define fatigue strength of a material. What is the measure of fatigue 

strength? 

49. Is there any experimental evidence of an elastic fatigue strength? 

50. Describe three methods of obtaining the endurance limit of a material 

from tests. 

51. What evidence is there that the static ultimate strength is a better 

criterion of the fatigues trength of a material than is the static elastic limit or 

yield-point? 



CHAPTER XVI 

TABLES OF PROPERTIES OF MATERIALS 

By H. F. Moore 1 and F. B. Seely 

157. Use of Tables.—In this chapter are grouped, for con¬ 

venience, tables giving average values of the properties of the more 

common structural materials. In using these tables it should be 

remembered that the values given are average values, and that the 

values of the properties of any one material may vary considerably 

from those given in these tables. Therefore, the values given 

should not be used blindly; the uniformity and general quality 

of the material should be considered in addition to the properties. 

If possible, structures and machines in which the material has been 

used should be studied. When average values of the properties 

of a material are the only information available the values used in 

design should err on the side of safety. 

1 Research Professor of Engineering Materials, University of Illinois. 
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TABLE II 

Average Values for Static Strength and Ductility of Various 

Non-ferrous Metals and Alloys 

Values given are based on test data from various testing laboratories. 

Metal or Alloy 
Approximate 
Composition 

Per Cent 

Weight 

Lb. per 

Cu. In. 

Strength in 1 

Proportional 

Elastic 
Limit 

Lb. per 

Sq. In. 

'’ension (a) 

Ultimate 
Tensile 

Strength 

Lb. per 
Sq. In. 

Elonga¬ 
tion in 

2 In. 

Per Cent 

Copper, annealed. Copper, 100 0.320 3,200 32,000 56 

cold-drawn... 38,000 50,000 8 

Zinc, cast. Zine. 100 0.253 9,000 Slight 

rolled. 5,000 24,000 50 

Tin, cast. Tin. inn 0.260 4,000 (6) 

rolled. 5,000 (c) 

Read, east . Lead, inn 0.410 1,700 (d) 

rolled. 3,300 (e) 

Common brass, cast... J Copper, 60; 0.290 20,000 55,000 20 

rolled. 1 zinc, 40 25,000 65,000 30 

Phosphor bronze, 
cast. Copper, 95; 0.32 10,000 32,000 7 

rolled. tin, 4.9; 40,000 65,000 30 

hard-drawn.... phosphorus 105,000 5 

spring wire.... trace 

Aluminum bronze, 

cast. Copper, 90; 0.27 25,000 60,000 25 

rolled. aluminum, 10 30,000 70,000 30 

Nickel, 67: 

Monel metal, copper, 28; 0.32 

cast. iron + carbon 37,000 72,000 (/) 34 

rolled. +manganese 50,000 85,000 42 

-(-silicon, 5 

General Note: A large number of special alloys of copper, tin, zinc, and other metals 

are in use whose physical properties differ somewhat from those tabulated here. The 
physical properties tabulated above are only general averages, and they may be materially 

modified by heat treatment, and very markedly modified by cold-rolling or cold drawing. 

(a) Where no values for compressive strength are noted the ultimate in compression 

may be assumed as having the same value as the proportional limit in tension. The strength 

in shear may be taken as 60 per cent of the strength in tension. 

(b) Ultimate in compression, 6400 lb. per sq. in. 
(c) Modulus of elasticity in tension, 4,000,000 lb. per sq. in. 

(d) Modulus of elasticity in tension, 700,000 lb. per sq. in. 
(e) Modulus of elasticity in tension, 1,000,000 lb. per sq. in. 

(/) Modulus of elasticity in tension, 22,000,000 lb. per sq. in. 
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TABLE III 

Average Values for Static Strength and Ductility of Light 

Metal Alloys 

The values given in this table are based on data from various testing labora¬ 
tories, especially from the laboratory of the U. S. Air Service at McCook 
Field, Dayton, Ohio. 

Metal 

Weight 

Lb. per 
Cu. In. 

Tensile strength* 
Lb. per Sq. In. 

Elongation 

In 2 In. 

Per Cent 
Proportional 

Elastic Limit 
Ultimate 

Commercial aluminum, 99% pure: 
cast. 0.093 9,000 13,000 20 

rolled and annealed. 0.097 8,500 13,500 23 
hard-drawn. 0.097 20,000 30,000 4 

hard-drawn wire. 0.097 30,000 40,000 4 

Aluminum 96%, copper 4%: 

cast. 0.104 11,500 19,500 12 

hard-drawn. 0.104 35,000 41,000 5 

Duralumin; aluminum 96%, magnesium 1%, 
copper 2.9%, traces of iron, silicon, and 

manganese: 

annealed. 0.102 6,800 25,200 18 

tempered. 0.102 18,500 51,200 29 

Electron metal, magnesium 95%, zinc 4.4%, 
small quantities of copper, iron, silicon, 

and aluminum: 

rolled. 0.065 6,800 25,200 25 

* The compressive strength of metals here tabulated may be safely taken as equal to 

the proportional elastic limit in tension. The strength in shear may safely be taken as 60 

per cent of the tensile strength. 
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TABLE IV 

General Properties and Uses of Wood 

Wood General Properties Used for 

Hard Woods: 

White Oak. Strong and tough, close grained, 

splits with difficulty, heavy, 

must be carefully seasoned to 

avoid checking. 

Ties, vehicle and furniture 

making, interior finish, fram¬ 

ing where great strength is of 

first consequence. 

Red Oak. A softer, weaker, and more por¬ 

ous kind of oak than white oak. 

Ties, interior finish, furniture. 

Hickory. The strongest, toughest, and 

heaviest of American woods. 

Susceptible to the attacks of 

boring insects. 

Vehicle and agricultural imple¬ 

ment manufacture. 

Maple. Rather coarse grained, but heavy 

and strong. It takes a fine 

polish. 

Flooring, furniture, interior 

finish. 

Elm. Strong and tough, but difficult to 

split and shape. It warps 

badly. 

Vehicle and ship building. 

Ash. Strong, but not very tough. Interior finish. 

Soft Woods: 

Spruce. Light, soft, straight grained, re¬ 

sistant to decay. 

Framing timbers, piles, under 

water construction. 

Douglas Fir. 

(Oregon Fir) 

Strong, though rather variable in 

quality, durable. 

All kinds of construction. 

White Pine. Light, soft, straight grained, not 

very strong. 

Pattern making, interior finish. 

Norway Pine. Hard, light, coarse grained. All kinds of construction. 

(Red Pine) 

Western Pine. Trade name for a number of kinds 

of wood with general character¬ 

istics somewhat like Norway 

pine. 

General construction work. 

Yellow Pine. The strongest and toughest of the 

soft woods. Heavy, decays in 

contact with soil. 

Heavy framing timbers, flooring, 

Hemlock. Light, brittle, splits easily. Cheap framing lumber, crates 

and boxes. 

Tamarack (Larch).. Strong, heavy, durable. Ties, sills, posts and poles, ship 

lumber. 

Cedar. Light, durable, but not strong. Water tanks, shingles, posts, 

fencing, boats. 

Redwood. Durable in contact with soil 

Weak and brittle, but very 

easy to work. 

Ties, posts and poles, general 

construction. 

Cypress. Very durable, light, close grained Shingles, poles, siding, interior 

easily worked, takes high polish finish, general building lumber. 
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TABLE VI 

Compressive Strength of Piers 

The values in this table are based on test data from Watertown Arsenal, 

the U. S. Bureau of Standards, Cornell University, and the University of 
Illinois. 

Make-up of Pier 

Ultimate 

Compressive 

Strength 

Lb. per Sq. In. 

Terra-cotta block, Portland cement mortar. 3000 
Vitrified brick, Portland cement mortar. 2800 
Pressed brick, Portland cement mortar. 2000 
Pressed brick, lime mortar. 1400 
Common brick, Portland cement mortar. 1000 
Common brick, lime mortar. 700 

Sand-lime brick, lime mortar. 500* 

* Strength of sand-lime brick piers is estimated from comparative strength of individual 

sand-lime bricks and common bricks. 

TABLE VII 

Compressive Strength of Portland Cement Concrete 

The values in this table are from the report of the Joint Committee on 

Concrete and Reinforced Concrete. The values are based on test data from 

specimens in the form of cylinders 8 inches diameter by 16 inches long, stored 

under laboratory conditions and tested when 28 days old. The fine aggregate 

except for gravel and cinders is sand, and enough was used to fill the voids in 

the coarse aggregate; usually the ratio (by volume) of fine aggregate to coarse 

aggregate was about 1:2. 

Granite, trap rock. 3300 2800 2200 1800 

Gravel, hard limestone, hard sandstone. 3000 2500 2200 1800 

Soft limestone, soft sandstone. 2200 1800 1500 1200 

Cinders. 800 700 600 500 

1400 

1400 

1000 
400 
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TABLE VIII 

Results of Shearing Tests of Portland Cement Concrete 

The values in this table are summaries of results given in Bulletin No. 8 of 

the University of Illinois Engineering Experiment Station. It is probable 

that concrete, a brittle material, fails in tension on inclined planes rather than 

in shear. The values here given are the unit-stresses in shear at failure for 

specimens so tested that flexure, direct tension, and direct compression were 

minimized. The concrete was 60 days old when tested. The aggregate used 

was bank sand and soft limestone. 

Ultimate, Lb. per Sq. In. 

Proportion of 

Cement to 

Aggregate 

Computed 

Unit-stress 

in Shear at 

Compressive 

Strength 

as Given by 

failure; Compression 

Shearing Tests Tests 

1 : 6 1290 2430 

1 : 9 1090 1290 

TABLE IX 

Static Strength and Stiffness of American Building Stone 

Values based on test data from Watertown Arsenal. 

Stone 

Weight 

(Av.) 

Lb. per 

Cu. Ft. 

Ultimate in Compres¬ 
sion . 

Lb. per Sq. In. 

Computed 

Ultimate 
in Shear 

Lb. per 

Sq. In. Av. 

Modulus of Rupture 

(Flexure) 

Lb. per Sq. In. 

Modulus of 

Elasticity 

(Flexure) 

Lb. per 

Sq. In. 
Max. Min. Av. Max. Min. Av. 

Granite 165 26,000 15,000 20,000 2300 2200 1200 1600 7,500,000 

Marble. 170 16,100 10,300 12,500 1300 2300 800 1500 8,200,000 
Limestone. . 160 20,000 3,200 9,000 1400 2700 250 1200 8,400,000 
Sandstone. . 135 19,000 6,700 12,500 1700 2200 500 1500 3,300,000 
Slate . 175 15,000 8500 14,000,000 
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TABLE X 

Working Stresses for Structural Materials Subjected to 

Static Loading 

The values in this table are from the building ordinances of the city of 
Chicago. 

Allowable Compressive Stresses for Masonry (lb. per sq. in.): 

Coursed rubble, Portland cement mortar. 200 

Ordinary rubble, Portland cement mortar. 100 

Coursed rubble, lime mortar. 120 

Ordinary rubble, lime mortar. 60 

First-class granite masonry, Portland cement mortar. 600 

First-class limestone and sandstone masonry, Portland 

cement mortar. 400 

Portland cement concrete, 1-2-4 mixture, machine mixed. 400 

Portland cement concrete, l-2£-5 mixture, machine mixed.... 350 

Portland cement concrete, 1-3-6 mixture, machine mixed. 300 

Paving brick masonry, Portland cement mortar. 350 

Selected hard common brick masonry, Portland cement 

mortar. 200 

Common brick masonry, Portland cement mortar. 175 

Common brick masonry, lime mortar. 100 

Allowable Stresses for Timber (lb. per sq. in.): 

Wood 

Extreme 

Fibers 

in 

Beams 

Compression 

Along the 

Grain* 

Compression 

Across the 

Grain 

Shear 

Along 

the 

Grain 

Douglas fir and long leaf yellow 

pine. 1300 1100 250 130 

Oak. 1200 900 500 200 

Short leaf yellow pine. 1000 800 250 120 

Norway pine and white pine. . . 800 700 200 80 

Hemlock. 600 500 150 60 

* For columns these values are too high; a column formula must be used. 



388 TABLES OF PROPERTIES OF MATERIALS 

Allowable Stresses for Iron and Steel (lb. per sq. in.): 

Kind of Stress 
Rolled 

Steel 

Steel 

Castings 

Wrought 

Iron 

Cast 

Iron 

Tension on net section. 16,000 16,000 12,000 

Max. compression on gross section. 14,000 14,000 10,000 10,000 

Bending on extreme fiber. 16,000 16,000 12,000 

Bending on extreme fiber, tension. 3,000 

Bending on extreme fiber, compression 10,000 

Bending on extreme fiber pins . 25,000 

Shear, pins and shop-driven rivets. ... 12,000 

Shear, field-driven rivets 10,000 

Shear on rolled steel shapes 12,000 

Shear plate girder webs, gross section.. 10,000 

Shear on brackets. 2,000 

Bearing, pins and shop-driven rivets. . 25,000 

Bearing, field-driven rivets. 20,000 

TABLE XI 

Average Values of Modulus of Resilience (or Elastic Energy 

Strength) and Toughness (or Ultimate Energy Strength) 

Material 

Tensile 
Propor¬ 
tional 
Limit 

(lb. per 
sq. in.) 

se 

Tensile 
Ultimate 
Strength 
(lb. per 
sq. in.) 

Su 

Tensile 
Modulus 

of Elastic¬ 
ity 

(lb. per 
sq. in.) 

E 

Ultimate 
Elonga¬ 
tion Per 
Inch of 
Length 

(in.) 

ew 

Tensile 
Modulus 
of Resili¬ 

ence (in.-lb. 
per cu. in.) 

1 se 2 

2 E 

Toughness 
in Tension 

(Represented 
by area under 
Stress-strain 

Diagram) 
(in.-lb. per 

cu. in.) 

Low carbon steel. 30,000 60,000 30,000,000 0.35 15.0 15,700 
Medium carbon steel.. 45,000 85,000 30,000,000 0.25 33.7 16,300 
High carbon steel. 
Special alloy steel 

75,000 120,000 30,000,000 0.08 94.0 5,100 

(Heat treated). 200,000 230,000 30,000,000 0.12 667.0 22,000 
Gray cast iron. 6,000 20,000 15,000,000 0.005 1.2 70 
Malleable cast iron. .. 20,000 50,000 23,000,000 0.10 17.4 3,800 
Rolled bronze. 40,000 65,000 14,000,000 0.30 57.2 15,500 
Timber (Hickory).... 5,500* 10,000* 2,400,000* 6.32* 

* In compression. 
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APPENDIX I 

FIRST MOMENTS AND CENTROIDS OF AREAS 

158. Definitions.—The moment of an area with respect to an 

axis is the algebraic sum of the moments of the elementary parts of 
the area, the moment of each part being the product of the ele¬ 
mentary area and the perpendicular distance from the elementary 
area to the axis. This moment is called the first moment to dis¬ 
tinguish it from the moment 
of inertia (or second moment, 
see Appendix II) of the area. 
The first moment of an area 
is sometimes called the statical 
moment of the area. 

The centroid of an area is 
a point whose distance (called 
a centroidal distance) from 
any axis times the total area 
is equal to the moment of the 
area with respect to that axis. 
Hence, the coordinates, x and 
y, of the centroid C of an area 

the equations 

ax = ^xda and ay=Jyda.(242) 

Or, expressed in another way, the centroid of an area is that 
point at which the whole area may be conceived to be concen¬ 
trated and have the same moment with respect to any axis as has 

the actual (distributed) area. 
If an area is symmetrical with respect to an axis, the centroid 

of the area lies in the given axis. This statement is evident from 
391 
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the fact that the moments of the areas on the opposite sides of the 
axis are numerically equal but of opposite sign. If an area is 
symmetrical with respect to each of two axes, the centroid of the 
area is the point of intersection of the two axes. 

159. Centroids Found by Integration.—In determining the 
centroid of an area by the method of integration, from the equa¬ 
tions in the preceding article, it is possible to select the element 
of area in various ways and to express the element in terms of either 
Cartesian or polar coordinates. The resulting integral may be a 
single or a double integral, depending on the way the element is 
selected. The integral, of course, is a definite integral, the limits 
of integration depending on the boundary curve of the area. In 
any case the element of area must be taken so that: 

1. All points of the element are the same distance from the 
line about which moments are taken; otherwise, the distance from 
the line to the element will be indefinite. 

2. The centroid of the element is known, in which case the 
moment of the element about the moment axis is the product of 
the element and the distance of its centroid from the axis or plane. 

The centroids of some of the common areas will be found in the 
following illustrative problems: 

ILLUSTRATIVE PROBLEMS 

Find, by the method of integration, the centroids of the following areas 

with respect to the axes indicated. 

Problem 246. Area of a Triangle.—In accordance with the second of the 

above rules the elements of area will be 

taken as strips parallel to the base of the 

triangle (Fig. 275). Since each element 

is bisected by the medium drawn from the 

vertex opposite the base, the centroid of 

each element, and hence of the entire 

area, lies on this median. If x denotes the 

width of the strip, the area of the strip is 

da — xdy. Thus. 

ay -f xydy. 

From similar triangles, the relation 

between x and y is, 

x b ^ ;-=- or x = - (h—y). 
h—y h h 
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Hence, 

Therefore, 

The centroid of a triangular area, then, is on the median line at a distance of 
one-third of the altitude from the base. 

Problem 247. Sector of a Circle.—First Method.—The element of area 
will be selected in accordance with the first of the above rules as indicated in 
Fig. 276. Since the area is symmetrical with respect to the z-axis, the cen¬ 
troid lies on this axis, and hence y — 0. The value of x may then be found 
from the equation, 

a xda 

p cos 6- pdpdd = lr3 sin a. 

Therefore, 
fr3 sin a fr3 sin a 2 r sin a 

a r2a 3 a 

Fig. 276. Fig. 277. 

Second Method— In accordance with the second of the above rules, the 
element of area will be selected as a triangle, as indicated in Fig. 278. The 
area of the triangle is hr2dd and the distance of its centroid from the y-axis is 
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fr cos 8. Hence, the moment of the triangle with respect to the ?/-axis is 
cos 6d8, and x is obtained from the equation, 

cos ddd 

Therefore, 
= fr3 sin a. 

__ fr3 sin a 2 r sin a 

r2<x 3 a 

Problem 248. Area of Quadrant of an Ellipse.—The semi-axes of the ellipse 
will be denoted by b and h (Fig. 279) and hence the equation of the ellipse is 

b*+w=1- 

A strip parallel to the y-axis will be selected as the element of area. From the 
equation of the ellipse, y may be expressed in terms of x by the equation, 

y = j'\/b2—x2. 
b 

Hence, 

To find x; 

a=Jy y^x=\^0 —x2dx = \irbh. 

x=fa 
x • ydx = -jf x's/b2—x2dx = \b2h. 

\tvbh'X= I xda 

Therefore, 
\b2h 46 
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To find y; the same strip will be used for the element of area, its centroid 
being at the distance \y from the rr-axis. Thus, 

\irbh-y = ^ ^y'ydx=^2Jo (b2—x2)dx = %bh2. 

Therefore, 

-_lbh2 4 h 

^ \irbh 37T 

Problem 249—Parabolic Segment.—Let the segment be bounded by 
h2x 

the z-axis, the line x = a, and the parabola y2 = — as shown in Fig. 280. A 

strip parallel to the y-axis will be selected as the element of area, the area of 
the strip being expressed by ydx. The area of the segment, then, is 

To find x; 

Therefore, 

b 2 
x3/^dx=-hb2. 

5 

-Jhh2Jhh2_\ 
a %bh 5 

To find y; the same elementary strip will be selected, but since each point 
of the element is not the same distance from the rr-axis, its moment must be 
expressed as the product of the area of the strip and its centroidal distance,. 

from the rc-axis. Thus, 
2 
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Therefore, 

_ \h2b Wb S 

V %bh~ 8 

Problem 250. Shaded Area in Fig. 281.—Let it be required to locate the 

centroid of the area between the 

y-axis, the line y = h, and the parabola 

h2x 
y2 =— represented by the shaded area 

b 

in Fig. 281. 

The element of area shown in the 

figure is parallel to the rr-axis, and is 

equal to xdy. The shaded area a is 

the area (bh) of the rectangle minus 

Fig. 281. the area (fbh) of the parabola segment. 

Hence a = %bh. 
To find x: In accordance with the second of the rules in Art. 159, we have 

Therefore 

To find y: 

Therefore, 

-if «462 1 b2h5 1 
—dy =-=— b2h. 

h* y 2 h* 5 10 

- 31, 
* = !o6' 

ay jrto-f 

u 

yxdy 

' b h* bh2 

y3dV = h* 4_T 

y=lh- 

160. Centroids of Composite Areas.—As noted in Art. 158, 

if the centroid of an area is known, the moment with respect to 

an axis is most easily found by multiplying the area by the dis¬ 

tance of the centroid from the axis. Thus, if a given area can be 

divided into parts, the centroids of which are known, the moment 

of the whole area may be found, without integrating, by obtaining 

the algebraic sum of the moments of the parts into which the area 

is divided, the moment of each part being the product of that part 

and the distance of its centroid from the line. Thus, for example, 

if a'i, a'2, cl'3, etc., denote the parts into which an area a is divided, 
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and x'o, x"o, x'"o, etc., denote the ^-coordinates of the centroids of 

the respective parts, then, 

(a'i+a,2+a,3+ . . . )x=a'ix'o~\~dr2X/'o~{~cirsx"/o, . (243) 
or, 

Similarly, 
ax = X(a'x o). 

ay = 2 (o'Vo). 

ILLUSTRATIVE PROBLEM 

Problem 251. Locate the centroid of the T-section shown in Fig. 282. 

Solution.—If axes be selected as indi¬ 
cated, it is evident from symmetry that 
x = 0. By dividing the given area into areas 
a'\ and a\, and by taking moments about 
the bottom edge of the area, y may be found 
as follows: 

ay = ’2 (a'yo), 

-12X1+12X5 

V~ 6X2+6X2 

PROBLEMS 

252. Locate the centroid of the channel section shown in Fig. 283. 

Ans. z = 0.79 in. 

253. Locate the centroid of the shaded area shown in Fig. 284. 

254. Locate the centroid of the segment of a circle as shown in Fig. 285. 
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In the expression for x make « = - an<^ see ^ ^he resu^ aSrees with the result 

found in Prob. 247 for a semicircle. 

255. Find the distance, from the larger base, of the centroid of the area of 
h 2&1-P&2 

the trapezoid shown in Fig. 286. Ans. v = -- 
3 61+62 

256. Fig. 287 represents the cross-section of the end post of a bridge. The 
area of each channel section is 4.78 square inch. Find the distance from the 
top of the cover plate to the centroid of the section. 
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SECOND MOMENT OR MOMENT OF INERTIA OF AN AREA 

161. Moment of Inertia of an Area Defined.—In the analysis of 

many engineering problems as, for example, in determining the 

stresses in a beam or a shaft, expressions of the form Jx2da are 

frequently met, in which da represents an element of an area a, 
and x is the distance of the element from some axis in, or perpen¬ 
dicular to, the plane of the area, the limits of integration being such 
that each element of the area is included in the integration. An 
expression of this form is called the second moment of the area or the 
moment of inertia of the area with respect to the given axis. 

The moment of inertia of an area with respect to an axis in, or 
perpendicular to, the plane of the area may, then, be defined as the 
sum of the products obtained by multiplying each element of 
the area by the square of its distance from the given axis. 

The term moment of inertia is somewhat misleading, since 
inertia is a property of physical bodies, only, and hence an area 
does not possess inertia. For this reason the term, second moment 
of an area, is to be preferred, particularly when contrasting the 
expressions of the form here discussed with expressions which were 
defined as first moments of areas in Appendix I. It may be noted 
that each term x2da in the summation can be written in the form 
x(xda), and hence represents the moment of the moment of an 
element of area, that is, the second moment of the element. The 
term moment of inertia, however, is very widely used, due to the 
fact that the expression is of the same form as an expression which 
is defined as the moment of inertia of a body and which does have 

a physical significance. 
The moment of inertia of an area with respect to an axis will 

be denoted by I for an axis in the plane of the area and by J 
for an axis perpendicular to the plane of the area. The particular 

399 



400 APPENDIX II 

axis (or direction of the axis) about which the moment of inertia 
is taken will be denoted by subscripts. Thus, the moments of 
inertia of the area (Fig. 288) with respect to the x- and y-axes 

y are expressed as follows: 

Ix=jy2da, 

and 

Iv = jx2da. 

Fig. 288. 

(244) 

Units and Sign.—Since the moment of inertia of an area is the 
sum of a number of terms each of which is the product of an area 
and the square of a distance, the moment of inertia of an area 
is expressed as a length to the fourth power. If, then, the inch 
(or foot) be taken as the unit of length, the moment of inertia 
will be expressed as inches (or feet) to the fourth power (written 
in.4 or ft.4). Further, the sign of each of the products x2da is 
always positive since x2 is always positive, whether x is positive 
or negative, and da is essentially positive. Therefore the moment 
of inertia, or second moment, of an area is always positive. In 
this respect it differs from the first moment of an area, which may 
be positive, negative, or zero, depending on the position of the 
moment axis. 

162. Polar Moment of Inertia.—The moment of inertia of an 
area with respect to a line perpendicular to the plane of the area is 
called the polar moment of inertia of the area and, as noted in Art. 
161, will be denoted by J. Thus the polar moment of inertia 
with respect to the 2-axis, of an area in the #?/-plane (Fig. 288) 

Jz = Iv+Ix.(245) 

Hence the following proposition may be stated: 
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The polar moment of inertia of an area with respect to any axis 
is equal to the sum of the moments of inertia of the area with respect 
to any two rectangular axes in the plane of the area which intersect 
on the given polar axis. 

163. Radius of Gyration.—Since the moment of inertia of an 

area x2da or J'r2da, etc.,^ is four dimensions of length, it 

may be expressed as the product of the total area, a, and the 
square of a distance, k. Thus, 

or 

J2 = J'r2da = akz2. 

(246) 

The distance k is called the radius of gyration of the area with 
respect to the given axis, the subscript denoting the axis with 
respect to which the moment of inertia is taken. The radius of 
gyration of an area with respect to a line, then, may be defined as 
a distance such that, if the area were conceived to be concen¬ 
trated at this distance from the given line, the moment of inertia 
would be the same as the moment of inertia of the actual or dis¬ 
tributed area with respect to the same line. 

From the equation Iv=j'x2da = aky2, it will be noted that 

kv2, the square of the radius of gyration with respect to the y-axis, 
is the mean of the squares of the distances, from the ?/-axis, of the 
equal elements of area into which the given area may be divided, 
and that it is not the square of the mean of these distances. The 
mean distance (x) of the elements of area from the y-axis is the 
centroidal distance as discussed in the preceding chapter. Hence 
ax2 does not represent the moment of inertia of an area with respect 
to the y-axis. 

164. Parallel Axis Theorem.—If the moment of inertia of an 

area with respect to a centroidal axis in the plane of the area is 
known, the moment of inertia with respect to any parallel axis in 
the plane may be determined, without integrating, by means of a 
proposition which may be established as follows: In Fig. 290 let 
YY be any axis through the centroid, C, of an area and let Y'Y' be 
any axis parallel to YY and at a distance d therefrom. Further, 
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let the moment of inertia of the area with respect to the axis YY 
be denoted by 7 and the moment of inertia with respect to Y'Y' by 
7. By definition then, 

I = f(x+d)2da 

Therefore, 

= j~x2da+2 djxda+d2J da. 

I=I-\-ad2, sinceJxda = ax = C • • (247) 

Hence the following proposition may be stated: 
The moment of inertia of an 

area with respect to any axis in the 
plane of the area is equal to the 
moment of inertia of the area with 
respect to a parallel centroidal axis 
plus the product of the area and 
the square of the distance between 
the two axes. This proposition is 
called the parallel axis theorem. 

A corresponding relation exists between the radii of gyration of 
the area with respect to two parallel axes, one of which passes 
through the centroid of the area. For, by replacing I by ak2 and 

7 by ak2 the above equation becomes, 

ak2 = ak2-\-ad2. 
Whence, 

k2=~k2+d2,.(248) 

where k denotes the radius of gyration of the area with respect to 

any axis in the plane of the area and k denotes the radius of gyra¬ 
tion of the area with respect to a parallel centroidal axis. 

Similarly, for polar moments of inertia and radii of gyration, it 
can be shown that, 

J—J -\-ad2, 
and, 

k — k2-\~d2} 

where J and k denote the polar moment of inertia and radius of 
gyration, respectively, of the area with respect to the centroidal 
axis and J and k denote the polar moment of inertia and radius of 
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gyration, respectively, of the area with respect to an axis parallel 

to the centroidal axis and at a distance d therefrom. 
165. Moments of Inertia Found by Integration.—In deter¬ 

mining the moment of inertia of a plane area with respect to a line, 

it is possible to select the element of area in various ways and to 

express the area of the element in terms of either Cartesian or polar 

coordinates. Further, the integral may be either a single or double 

integral, depending on the way in which the element of area is 

selected; the limits of integration are determined, of course, 

from the boundary curve of the area. In any case, however, 

the elementary area must be taken so that: 

(1) All points in the element are equally distant from the axis 

with respect to which the moment of inertia is to be found, other¬ 

wise the distance x in the expression x2da would be indefinite. 

Or, so that, 

(2) The moment of inertia of the element, with respect to the 

axis about which the moment of inertia of the whole area is to be 
found, is known, the moment of inertia of the area then being 

found by summing up the moments of inertia of the elements. 

Or, so that, 
(3) The centroid of the element is known and also the moment 

of inertia of the element with respect to an axis which passes 

through the centroid of the element and is parallel to the given 

axis; the moment of inertia of the element may then be expressed 

by means of the parallel axis theorem. 
The moments of inertia of some of the simple areas will now be 

found in the following illustrative problems: 

ILLUSTRATIVE PROBLEMS 

Problem 257.—Determine the moment of inertia of a rectangle, in terms 

of its base b and altitude h, with respect to (a) a centroidal axis parallel to 

the base; (6) an axis coinciding with the base. 

Solution.—(a) Centroidal Axis.—The element of area will be selected in 

accordance with rule (1) above, as indicated in Fig. 291. The moment of 

inertia of the rectangular area with respect to the centroidal axis, then, is, 

+- 

7x=zfy2da=J h y2bdy 
~~2 
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(6) Axis Coinciding with the Base. First Method.—The element of area 
will be selected as indicated in Fig. 292. The moment of inertia of the rect¬ 
angle with respect to the base, then, is, 

h=j'y2da=JQ = ! y*bdy 

M*. 

[Av 
/ 

? 

f da=bdy 

Si 

< 

V 

<-b-> 

Fig. 292. 

Second Method.—Since the moment of inertia of the rectangle with respect 
to a centroidal 'axis is Tzbh3, the moment of inertia with respect to the base 
may be found from the parallel axis theorem (Art. 164). Thus, 

lb = I x~\~n 
/A2 

=&bv+bhx~ 

=lbhK 

Problem 258.—Determine the moment of inertia of a triangle, in terms of 
its base b and altitude h, with respect to (a) an axis coinciding with its base; 
(6) a centroidal axis parallel to the base. 

Solution.—(a) Axis Coinciding with the Base.—The elementary area 
will be selected as shown in Fig. 293. The moment of inertia of the area of the 
triangle with respect to the base, then, is, 

h = j”y2da = j~y*xdy. 

But, from similar triangles, 
x h-y 

b~ h ’ 

x = T (h-y). 
h 

Hence, 
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Therefore, 

k-b-*f b-H 

Fig. 293. Fig. 294. 

(b) Centroidal Axis Parallel to the Base.—-The centroidal axis parallel 
to the base (axis XX) is shown in Fig. 294 (see Prob. 246). Using the parallel 
axis theorem, the moment of inertia of the triangular area with respect to the 
centroidal axis is, 

Ix=h~a{\hY 

= thbh*-hbhXW 

Problem 269. Determine the moment of inertia of the area of a circle, in 
terms of its radius r, with respect to an axis coinciding with the diameter; 
(a) using Cartesian coordinates; (6) using polar coordinates. 

Solution.—(a) Cartesian Coordinates.—The element of area will be 
selected as shown in Fig. 295. The moment of inertia of the circular area 
with respect to the diameter, then, is, Y 

Fig. 295, 

(b) Polar Coordinates.— The element of area will be selected as shown in 

Fig. 296. Hence, 
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-XX 
-XX 

r4 C2x • 
= I sin Odd 

4 Jo 

(p sin 0)2 pdpdO 

p3 sin2 0 dpdO 

r4 11 
= — Xir = -7rr4 = —ird4. 

4 4 64 

Problem 280.—Determine the polar moment of inertia of the area of a 
circle of radius r with respect to a centroidal axis: (a) by integration; (6) 

by use of the theorem of Art. 132. 

Solution.—(a) By Integration.—By selecting the element of area as 
indicated in. Fig. 297, the polar moment of inertia of the circular area is, 

(b) By Use of Theorem of Art. 162.—Since Ix and Iy are each equal to 
\-irr4 (Prob. 259), the polar moment of inertia of the area of the circle is, 

J z = Ix~\~Iy 

= £7rr4 + £7rr4 

PROBLEMS 

261. Determine the moment of inertia of the area of a circle, with respec, 
t,o an axis tangent to the circle, in terms of, r, the radius of the circle. 

262. Determine the polar moment of inertia of the area of a rectangle of 
base b and altitude h with respect to the centroidal axis. 

Ans. J =-1\6/i(52+/i2). 

263. Find the moment of inertia and radius of gyration of a circular area 
16 in. in diameter, with respect to a diameter. 

264. Determine the moments of inertia of the area of an ellipse, the prin¬ 
cipal axes of which are 2b and 2h, with respect to the principal axes. 

Ans. Ij) = \Trbh3. h = \M3. 
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265. The base of a triangle is 8 in. and its altitude is 10 in. Find the 
moment of inertia and radius of gyration of the area of the triangle with 
respect to the base. 

266. Find the polar moment of inertia and radius of gyration of the area 
of a square, each side of which is 15 in., with respect to an axis through one 
corner of the square. 

267. Find the polar moment of inertia, with respect to a centroidal axis, 
of the area of an isosceles triangle having a base b and altitude h. 

Ans. J =Tzbh(lb2-\-$h2). 

166. Moments of Inertia of Composite Areas.—When a com¬ 

posite area can be divided into a number of simple areas, such as tri¬ 
angles, rectangles, and circles, for which the moments of inertia 

are known, the moment of inertia of the entire area may be 
obtained by taking the sum of the moments of inertia of the several 
areas. Likewise, the moment of inertia of the part of an area 

that remains after one or more simple areas are removed may be 
found by subtracting, from the moment of inertia of the given area, 
the sum of the moments of inertia of the several parts removed. 

ILLUSTRATIVE PROBLEMS 

Problem 268. Locate the horizontal centroidal axis, XX, of the T-section 
shown in Fig. 298 and find the moment of inertia of the area with respect to 
this centroidal axis. 

Solution. First Method.—The distance, y, of the centroid of the area from 
the axis X iX x may be found from the equation, 

Thus, 
ay = X(a'y0). 

__ 12X7 + 12X3 

V~ 12 + 12 

= 5 in. 

The moment of inertia with respect to the XX 
axis is the sum of the moments of inertia of the 
three parts a'i, a' 2, and a'3, with respect to that 

axis. Thus, 

7a: = iVX6X(2)3+12X(2)2+^X2X(l)3+|X2X(5)3 

= 4+48+.67 +83.33 

= 136 in.4 
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Second Method.—The moment of inertia of the T-section may also be 

determined as follows: First find the moment of inertia of the T-section with 

respect to the axis X1X1 by subtracting the moments of inertia of the parts 

a\ and a'5 from the moment of inertia of the rectangular area ABCD, and then 

find Ix for the T-section by use of the parallel axis theorem. Thus, the 

moment of inertia, Ix, of the T-section with respect to the XiX 1 axis is, 

/x = £X6X(8)3—2X£X2X(6)3 = 736 in.4; 

and 

Ix=Ix—Ad2 = 736 - 24 X (5)2 = 136 in.4. 

Problem 269. Find the moment of inertia of the channel section shown in 

Fig. 299 with respect to the line XX. Find also the moment of inertia with 

respect to the parallel centroidal axis. 

Solution.—The area may be divided into triangles and rectangles as shown 

in the figure. The values used in the solution may be put in tabular form as 

shown below, where a' denotes the area of any part, y0 the distance of the cen¬ 

troid of the part from the line XX, I0 the moment of inertia of the part with 

respect to its own centroidal axis parallel to XX, and I'x the moment of inertia 

of the part with respect to the axis XX. 

Part a' Vo a'yo h a'yo2 I'x = Io+ayo2 

a'i 0.745 1.61 1.20 0.44 1.93 2.37 

a\ .745 1.61 1.20 • .44 1.93 2.37 

a'3 .585 1.17 0.68 .23 0.80 1.03 

a\ .585 1.17 .68 .23 .80 1.03 

a's .360 0.14 .47 .02 .07 0.09 

6.02 in.2 4.23 in.3 6.89 in.4 

Thus the moment of inertia Ix of the area with respect to the XX axis is, 

Ix = Xl'x = 6.89 in.4 
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Further, the total area is a = 2a' =6.02 in.2 and the moment of the area with 

respect to the XX axis is 2(a'?/o) =4.23 in.3 Hence, the distance, y, of the 

centroid of the area from the XX axis is, 

Therefore, the moment of inertia with respect to a line through the centroid 

and parallel to XX is given by the equation, 

lx = lx— 

= 6.89—6.02 X(.70)2 

= 6.89-2.95 

= 3.94 in.4 
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PROBLEMS 

270. A wooden column is built up of four 2-in. by 8-in. planks as shown 
in Fig. 300. Find the moment of inertia of the cross-section with respect to 
the centroidal axis XX. Ans. 7 a; = 981 in.4 

K-8--->\ 

Fig. 300. 

271. Find the moment of inertia of the angle section (Fig. 301) with respect 
to each of the centroidal axes parallel to the two legs of the angle. 

272. In Fig. 302 is shown the cross-section of a standard 9-in. 21-lb. I- 
beam (fillets are neglected). Find the moments of inertia of the section with 
respect to the centroidal axes, XX and YY. Ans. 7^ = 84.9 in.4; 7^ = 5.16 in.4 

Fig. 302. 

273. In Fig. 303 is shown the cross-section of a standard 3| in. by 5-in. 
Z-bar (fillets are neglected). Find the moments of inertia of the section with 
respect to the centroidal axes XX and YY. 

274. In Fig. 304 is shown a built-up section made of a ^-in. by 20-in. plate 
and four angles. Find the moment of inertia of the section with respect to 
the XX axis. Ans. 7a; = 1850 in.4 
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!Y 

275. In Fig. 305 is represented a 16-in. circular plate in which there are 
drilled five 2-in. holes and one 4-in. hole as shown. Find the moment of inertia 
of the area of the holes with respect to the XX axis and also with respect 
to the YY axis. Ans. Ix = 252 in.4 

167. Approximate Method.—It is sometimes necessary to 

determine the moment of inertia of an area that has a boundary 
curve which cannot be defined by a mathematical equation. An 
approximate value of the moment of inertia of such an area may 
be found by the following method. For convenience, however, a 
simple area will be selected so that the approximate value of the 
moment of inertia as determined by this method may be com¬ 
pared with the exact value. Thus, 

let the moment of inertia of the area 
of a rectangle, with respect to an axis 1 
coinciding with its base, be found. : 
The area may be divided into any con¬ 
venient number of equal narrow strips Fig. 306. 

parallel to the base, as shown in Fig. 
306. (The narrower the strips the more closely will the result 

agree with the exact result.) Let the area be divided into ten 
such strips each 0.2 in. in width. The moment of inertia of the 

rectangle is equal to the sum of the moments of inertia of the strips. 
The moment of inertia of any particular strip with respect to the 

base of the rectangle is 

•A-X6X(!)3+6 XiXy2, 

where y is the distance of the centroid of the particular strip from 

the base. The first term is small and may be omitted without 
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serious error. The moment of inertia of each strip then is approx¬ 
imately equal to the product of the area of the strip and the 
distance of its centroid from the base. Hence, the moment of 
inertia of the rectangle is, 

7 = f(.l2+.32+.52+.72+.92+l.l2+1.32+1.52+1.72+1.92) 

=f X13.3 

= 15.96 in.4. 

According to Prob. 257 the exact value is, 

1 = %bh3 = JX6X23 = 16 in.4 
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LOCALIZED STRESS; ITS OCCURRENCE, SIGNIFICANCE 
AND MEASUREMENT 

By H. F. Moore 1 and F. B. Seely 

168. Limitations of the Ordinary Methods of Analysis in 
Mechanics of Materials.—In Art. 126 and 143 it was pointed out 

that the use of the analyses and formulas given in the mechanics 
of materials as developed in Part I does not make possible the com¬ 
putation of all stresses existing in a machine part or a structural 
member. However, the ordinary formulas of the mechanics of 
materials are not to be thought of as invalid, but as presenting an 
incomplete statement or picture of the stress conditions in a mem¬ 
ber. For example, in an I-beam subjected to bending, neither 

/ M c \ 
the flexure formula ( s=—^,Art. 341, which gives the tensile and 

compressive stresses, nor the formula for shearing stress (s8 = 

Jijzda, Art. 40^ take account of the intensity of bearing stress at 

the edge of a bearing block; in a shaft subjected to torsion the torsion 

formula (s»=~j} Art- 26J cannot be used to determine the stress at 

the root of a key way; in a bolt subjected to an axial tensile load, 

the axial load formula = —, Art. 3J does not give a measure of the 

concentration of stress at the root of the thread, even when a 
is taken as the area at the root of the thread, etc. 

169. Definition and Illustrations of Localized Stress.—Local¬ 
ized stress may be defined as stress existing over a small area of a 
machine part or a structural member, which stress is not deter- 

1 Research Professor of Engineering Materials at University of Illinois. 
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mined by the ordinary formulas of mechanics of materials as devel¬ 

oped in Part I. Localized stresses occur' at (1) the fillet of a 

shoulder in a shaft, (2) at the edge of a rivet hole, (3) at the root of 

the thread of a bolt, (4) at the edge of a non-metallic inclusion in a 

piece of steel, (5) at the edge of a bearing block, (6) at the bearing 

area between a car wheel and the rail, (7) at the root of a deep 

tool mark in a shaft, (8) at the sharp corner at the junction of head 

and shank of a bolt, etc. 
170. The Significance of Localized Stress.—(a) In Members 

Subjected to Static Loading.—As was discussed in Art. 126 and 143, 

for machine parts and structural members subjected to steady 

load, or to load repeated a few times, localized stresses are, in gen¬ 

eral, of very little significance, unless the members are made of 

brittle material; ductile material yields at the points of high 

localized stress and hence the stress is transferred from the over¬ 

stressed fibers to adjacent understressed fibers, and tho deforma¬ 

tion of the member as a whole is not appreciably affected. There¬ 

fore, when members made of ductile material are subjected to 

static loads the ordinary formulas of mechanics of materials may 

be regarded as giving a complete picture of the significant stresses 

in the more simple structural and machine members, although the 

secondary and localized stresses may be of much importance 

in the more complex structures, particularly those of large size 

and of new type. 

(b) In Members Subjected to Impact Loading.—In machine parts 

or structural members subjected to impact or energy loading, 

localized stress is of more importance than it is in members sub¬ 

jected to steady loads. As discussed in Chapter XIII, the energy 

absorbed by a material when it is stressed is proportional to the 

square of the stress. This means that the small portions of a member 

where the localized stresses occur absorb an excessive amount of 

the energy load before the main portion of the member can be 

appreciably stressed and hence before the main portion can be 

made to absorb an appreciable share of the energy load. As a 

result, the small portion where a localized stress occurs is likely 

to be stressed above the yield-point of the material; this in turn 

still further localizes the absorption of energy, and there is 

danger of rupture even if the material is relatively ductile. The 

stresses developed by energy loads are discussed in Chapter 

XIII. 
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(c) In Members Subjected to Repeated Loading.—As discussed 

in Chapter XIV in machine parts and structural members that 

are subjected to repeated loading, localized stresses must fre¬ 

quently be considered to be the significant stresses, and hence the 

ordinary formulas in mechanics of material give only a very rough 

estimate of the values of the stresses that may cause damage to 

the material. 

The above discussions indicate the need for methods of deter¬ 

mining the magnitudes of localized stresses; some of these methods 

are discussed below. 

171. Methods of Determining Magnitude of Localized Stress.— 

(a) Mathematical Analysis.—The simple mathematical analyses 

given in Part I serve to determine the average stresses over small 

areas of many common structural members and machine parts, but 

they do not determine the maximum stress at a point. When by the 

use of mathematical analyses it is attempted to get a more com¬ 

plete picture of stress distribution than is given by the ordinary 

analysis of mechanics of materials, especially when it is attempted 

to determine stresses or strains at sudden changes of outline of a 

part,—at fillets, shoulders, threads, and holes,—then the differ¬ 

ential equations involved in the mathematical analysis become 

very difficult, if not impossible, of solution. 

As an illustration of the determination of localized stress by 

means of mathematical analysis the reader is referred to the study 

by Inglis of the stresses at the edge of cracks in a plate.1 In this 

paper mathematical analysis is applied to the determination of 

stresses and strains at the edges of elliptical holes in a plate, and a 

crack is regarded as an elliptical hole with a very short minor axis. 

At the present development of our knowledge of mathematics, 

mathematical analysis can not be regarded as an available tool for 

the complete determination of localized stress in many machine 

parts and structural members. 

(6) Tests to Destruction of Models Made of Brittle Material.— 

A method of stress analysis, which has been used with good suc¬ 

cess to give approximate values of the maximum unit-stress in 

complex shapes, consists in loading a model of the member made 

of a brittle material that has a flat (nearly straight) stress-strain 

1 Inglis, C. E. “ Stresses in a plate due to the Presence of Cracks and 

Sharp Corners,” Trans. Inst, of Naval Architects (British), Vol. LV, Pt. I, p. 

219, 1913. 
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diagram up to the ultimate (such a material as hard cast iron, 

plaster of paris, or glass); from the same material is also made a 

model of simple shape, most commonly a tension test specimen. 

The specimen of simple shape and the model of complex shape are 

then tested to destruction; the test of the simple shape gives the 

ultimate strength of the material, and the test of the model gives 

with a fair degree of accuracy the load which produces this ulti¬ 

mate stress in the most stressed fibers of the model, and from these 

results the relation between load and maximum unit stress can 

be computed. The use of this method assumes that the deviation 

of the stress-strain diagram of the material from a straight line 

may be neglected. 

An example of this method of stress-determination is found in 

the determination, first by Bach 2 and later by Kommers 3 of the 

shearing stresses in torsional members having non-circular cross- 

sections. Both Bach and Kommers used cast-iron specimens. 

This method must be regarded as yielding only approximate 

results. The deviation from Hooke’s law is considerable for all 

known materials when stressed up to rupture, and the effect of 

lateral restraint at the points of maximum (localized) stress causes 

the apparent values of the maximum unit-stress found in the test 

to be less than the true values. Moreover, by this method only 

the maximum unit-stress can be determined; this maximum unit- 

stress is, however, usually the most important stress to be deter¬ 

mined. This method is simple, the model specimens are not very 

expensive to prepare, and valuable results may be secured by its 

use. 

(c) Yield-point Tests of Models Made of Ductile Material.— 

The maximum localized stress in a member may be determined by a 

method somewhat similar to (b), in which a model of the piece made 

of ductile material with a well-marked yield-point is employed, 

such as ordinary low-carbon steel. The'yield-point of the material 

is determined by the test of a tension specimen, a compression 

specimen, or a hollow torsion specimen depending on the kind of 

stress to which the model is subjected, and then load is applied to 

the model of the desired shape made of the same material. As load 

is applied the surface of the model is carefully watched for evidence 

2 Bach, C. “ Elastizitat und Festigkeit,” Eighth edition, pp. 342 to 401. 

3 Kommers, J. B. “Torsion Tests of Cast Iron,” American Machinist, 

May 28, 1914, p. 941. 
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of yielding. If the model is flat and if a surface can be left with 

the mill scale on it, the flaking off of this mill scale gives a fairly 

accurate indication of a localized stress equal to the yield-point of 

the material, and from the known value of the yield-point of the 

material and of the load on the model when flaking first occurs, the 

relation between load and unit-stress can be determined. If the 

surface of the model is painted with a wash of white Portland 

cement the yielding can be detected by the cracking of the cement. 

Instead of using the flaking of mill scale or of cement paint, 

as an indicator of the yield-point stress, the surface of the model 

may be polished, and the localized yield-point stress detected by a 

slight wrinkling of the polished surface, giving rise to what are 

known as “ Luders’ lines.” 

The yield-point method4 of determining localized stress, like 

the brittle material method (6), determines only the maximum 

unit stress. It is usually desirable to use rather large models, 

and this necessitates the use of a large testing machine to develop 

in them the yield-point stress. This method, like method (6), 

should be regarded as yielding only approximate results, but it is 

very useful when more precise methods are not feasible. 

(d) Tests of Models Made of Plastic Material.—Certain soft 

metals, such as soft copper, lead and type metal, acquire a per¬ 

manent set when subjected to a very small stress, and the perma¬ 

nent set is approximately proportional to the stress applied. An 

approximate determination of the localized stress in irregular¬ 

shaped members can be made by making models of the irregular 

members out of soft copper, type metal or other plastic metal, 

laying off on the surface of the model a series of reference lines at 

known distances from each other, applying load, and, after remov¬ 

ing the load, measuring the distortion between reference lines at 

various parts of the member. This measurement can sometimes 

be best made with the aid of a low-power microscope. 

The relative distortion between gage lines at various parts of 

the model gives an approximate measure of the proportionate 

unit-strain developed at that location. Shearing unit-strain is 

measured by angular distortion between reference lines, tensile 

unit-strain or compressive unit-strain is measured by change of 

4 This method was used to determine the maximum stress in eye-bars 

by Epstein and Schwartz; the results of their tests were presented in 1911 as a, 

student’s thesis at the University of Illinois. 
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distance between lines. If the strain-distribution is known the 

stress-distribution can also be determined since the relation of 

stress to strain is known. At boundaries of the model this deter¬ 

mination of stress from strain is usually quite simply accom¬ 

plished. 

In a distorted plastic model the distortions to be measurable 

must be of appreciable magnitude, and the distortions will them¬ 

selves somewhat modify the distribution of stress throughout the 

model. This method of stress-analysis gives some idea of the 

general distribution of stress over the entire surface of the member, 

as well as the location and approximate determination of the max¬ 

imum unit-stress. In using this method it is desirable to use as 

large models as is feasible, so that the distortion becomes measur¬ 

able over a short gage length between reference lines. 

The use of the distortion of plastic models in determining stress- 

distribution is illustrated in Bach’s treatment of non-circular mem¬ 

bers subjected to torsion.5 

(e) Tests with Rubber Models.—A method somewhat similar to 

id) employs a rubber model similar in shape to the member to be 

studied. On the surface of the model reference lines are laid off, 

and the distortion between reference lines is measured while the 

member is resisting the load. This method is subject to the same 

inaccuracies as is method (d), and in addition is subject to error 

due to the fact that the stress-strain diagram for rubber deviates 

appreciably from a straight line, even for low stresses. The method 

is, however, very well adapted to show in a striking manner the 

general scheme of stress-distribution over the surface of a member. 

In using this method it is desirable to use as large models as is 

feasible, and, except for very simple shapes, such models are expen¬ 

sive. 

Examples of the use of rubber models in determining stress- 

distribution are furnished by the work of Chiles and Kelley 6 

on eyebars and plates with holes, and of Trelease 7 on stresses in 

flat slab structures. 

5 Bach, C. Elastizitat und Festigkeit, Eighth edition, pp. 342-350. 

6 Chiles and Kelley, “ The Resistance of Materials, The Effect of Sudden 

or Abrupt Changes in the Section on the Distribution of the Unit Stresses/' 

Railway Mechanical Engineer, March, April, May, 1919. 

7Trelease, “The Design of Concrete Flat Slabs,” Proc. American Con¬ 

crete Institute, Vol. VIII, 1912, p. 218. 
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(/) The Use of the Strain Gage on Actual Structures or on Models. 

—In any metal member the elastic strain in a gage length of 2 inches 

or more can be measured with a good degree of accuracy by means 

of a strain gage.8 The strain gage is a special form of micrometer 

for measuring changes of length along a gage line on the surface 

of a member or specimen. The use of the strain gage to determine 

localized stress is especially applicable to full-size structural mem¬ 

bers, and large parts of machines. The instrument has been used 

successfully in determining strains in reinforced concrete structures, 

steel bridge members, car bolsters, built-up girders, and steel 

columns. 

A limitation of the strain-gage method is the relatively long 

gage length which must be used. The ordinary strain gage cannot 

be used to determine localized stress at fillets, at the root of threads 

or at grooves in a shaft. The train-gage method is especially 

promising in the field of structural engineering. 

An illustration of the use of the strain gage in determining 

localized stress is to be found in the work of Moore and Wilson on 

stresses in the webs of I-beams and girders.9 

By the use of special very delicate extensometers attached to a 

specimen it is possible to measure strains over much shorter gage 

lengths than 2 inches. The investigations by Preuss of stress 

distribution round notches and holes in flat bars furnish a striking 

illustration of this method of stress analysis.10 

(g) The Use of Transparent Models, and Polarized Light.— 

An elegant and accurate method for the determination of stress 

distribution in flat members subjected to stress in one plane 

employs model specimens made of glass, celluloid, or other trans¬ 

parent material, which are viewed by polarized light. Space for¬ 

bids any detailed discussion of the optical problems involved in 

8 For a description of the strain gage and a discussion of the technique 

of its use, see Slater and Moore, “ The Use of the Strain Gage in Testing 

Materials,” Proc. Am. Soc. for Testing Materials, Vol. XIII, p. 1019 

(1913). 
9 Moore and Wilson, “ The Web Strength of I-beams and Girders,” 

Bulletin 86, Engineering Experiment Station, University of Illinois. 

10 Preuss, E. “ Versuche liber die Spannungsverteilung in Gelochten 

Zugstaben,” Zeit. Ver. Deut. Ing., 1912, p. 1780. 

“ Versuche liber die Spannungsverteilung in Gekerbten Zugstaben,” 

Zeit. Ver. Deut. Ing., 1913, p. 664. See also Johnson’s Materials of Construc¬ 

tion, fifth edition, p. 663. 
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the method.11 In general, if a transparent substance is viewed 

by polarized light it appears to be of some definite color, and the 

color depends on the state of strain in the material. If the stress- 

distribution across a section is uniform the color will be uniform; 

if the stress distribution is variable there will be bands of various 

colors, merging into each other; if there are sudden changes 

of stress these bands are so close together that sharply marked 

dark spots show up. A glance at a stressed model specimen 

illuminated by polarized light shows whether there are points of 

high localized stress. A simple method of estimating the magni¬ 

tude of localized stress consists in making from the same material 

as the model specimen a tension (or compression) test of a specimen 

of simple shape, in which the uniformity of color across the sec¬ 

tion shows a uniform stress-distribution. This auxiliary specimen 

is loaded until it shows some definite color red, say; it is then loaded 

further until the color changes through the spectrum to red again, 

and the difference in load for the change gives a measure of the 

stress required in the material to cause a “ red-to-red ” change. 

The model specimen of the shape to be studied is then tested, 

and the load necessary to cause a “ red-to-red ” change of color 

at any desired location is determined. This load then produces at 

the particular location a stress of known magnitude, and from the 

relation between the loads the localized stress at that location can 

be determined. Strictly speaking, it is not the stress which is 

determined directly, but the difference between principal strains 

at the location studied. However, at the boundaries, where the 

maximum localized stress frequently occurs, one principal strain is 

zero in which case the stress is found directly. In determining 

the maximum stress at a point not on the boundary it is neces¬ 

sary to measure the change in thickness at the location studied. 

This change in thickness is proportional to the sum of the prin¬ 

cipal strains at the location. Now having both the sum and the 

difference of the principal strains the maximum strain and the 

minimum strain can be determined. 

11 Coker, E. G. “ Photo-elasticity,” Engineering (London;, Jan. 6, 1911, 

p. 1. 

“ The Optical Determination of Stress,” Phil. Mag., Oct., 1910. 

Hey mans, Paul. “ Photo-elasticity and its Applications to Engineering 

Problems.” Publications of the Mass. Inst, of Tech., Serial No. 1, May, 1922. 

“ Stress Distribution in Rotating Gear Pinions as Determined by Photo¬ 

elastic Method,” Jour. Mechanical Engineering, Mar., 1924, p. 129. 
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This is a very brief outline of only one of the methods used 

in the photo-elastic determination of stress,—one of the sim¬ 

plest and less accurate methods. More refined methods use 

mono-chromatic light for illuminating the specimen, and instead 

of causing a change of color in the specimen the load is applied 

until the desired location on the specimen is black, and under 

further load the location is again brought to “ black ” by a definite 

adjustment of the optical system, this adjustment being calibrated 

in terms of stress by a test on a simple tension or compression 

specimen. 

The polarized-light method of stress-analysis can be made to 

yield results of a high degree of precision. The model specimens 

may be of small size, and comparatively inexpensive. In its 

present stage of development the method is limited to the study 

of flat members subjected to stresses in the plane of their flat 

surface;—the method could not be used, for example, to deter¬ 

mine the localized stresses at the filleted shoulders of an axle. 

(h) Repeated Stress Tests.—This method has been discussed in 

Art. 130 and 131. 

(i) Combination Methods of Stress-analysis.—It is frequently 

possible to use two or more of the methods outlined in the fore¬ 

going paragraphs, as checks on each- other; sometimes certain 

constants can be determined by an experimental method, after 

which mathematical analysis becomes possible. In determining 

the stress-distribution in the head of an eyebar the location of the 

maximum stress was determined by the yield-point test (method 

(c)), and with this location determined it was possible to apply 

mathematical analysis to determine the general stress-distribution. 

A most striking illustration of the use of a combination of 

experiment and mathematical analysis is furnished by the work of 

Griffith and Taylor in studying the torsional stresses in airplane 

propeller blades.12 The mathematical analysis of torsional stresses 

in members of irregular cross-section (such as airplane propeller 

blades) involves the use of differential equations that have not as 

yet been solved. However, it was observed that the differential 

equations for the deformations and stresses in a twisted bar of a 

given cross-section were, except for a constant term, the same 

as the differential equations for deflections and slopes at various 

12 Griffith and Taylor, Proc. Brit. Inst, of Mech. Engrs. 1917, Oct.-Dec., 

also, “ Engineering ” (London), Vol. 124, No. 3234, Dec. 21, 1917, p. 546. 
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points in an elastic film stretched over a hole of the same shape as 

the cross-section of the twisted bar, and deflected by a uniformly 

distributed normal pressure. The investigators used a soap film 

as an elastic film, stretched it over a brass plate, which had in it 

an opening of the shape of the cross-section of the airplane pro¬ 

peller blade, deflected the film by exhausting the air on one side 

of the plate, measured the deflection by means of a micrometer 

fitted with a soaped needle point, measured the slopes of the 

deflected film by means of a ray of light reflected from the film 

itself, and were thus able to determine the necessary constants for 

the computation of the shearing stresses in the airplane propeller 

blade when subjected to a given twisting moment. Their paper * 

is recommended for careful study as a brilliant example of the 

combination of methods leading to a highly accurate stress anal¬ 

ysis. 

In conclusion, it is to be noted that this appendix is scarcely 

more than a list of possible methods of stress-analysis, and that 

further study, especially of the references given, will be necessary 

before the suggestions given here can become useful in actual 

determinations of localized stress. 
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